Scalability of Linux pNFS

Presentation by: Bill Hass

Outline

- Objective
- Testing Architecture
 - Clustered Back-end
 - Single iSCSI Back-end
- Initial Testing Using Linux Back-End
- Current Testing Using Windows Back-End
- Thoughts

Objective

To demonstrate the performance scalability of pNFS

Initial Testing Architecture Clustered Back-End

The test platform is organized into three tiers:

- Storage servers
- Data servers
- Clients

Storage servers are clustered using CLVM and the data servers are clustered using cman.

Data servers and storage servers communicate with the iSCSI protocol over 1 GbE (1 Gbps over Ethernet).

Data servers and clients communicate with the NFSv4.1 protocol over 1 GbE.

Initial Testing Architecture Clustered Back-End

Problem?

- After running a few tests, Eric and Mike were unable to get good performance from the storage server back-end.
- We have a limited number of capable machines, using CLVM only allowed for up to 3 Data servers and 1 Metadata server.

Current Testing Architecture Single iSCSI Back-End

The test platform is again organized into three tiers:

- Storage servers
- Data servers
- Clients

Data servers and storage servers communicate with the iSCSI protocol over 1 GbE and 10 GbE.

Data servers and clients communicate with the NFSv4.1 protocol over 1 GbE.

Current Testing Architecture Single iSCSI Back-End

Testing Outline

We designed a series of tests to isolate file system performance.

- Test each layer in isolation under different conditions to determine the actual performance versus expected performance.
 - Test storage tier local file system. Compare ext4 and gfs2 performance.
 - Test iSCSI performance with benchmarks running on data servers over ext4 and gfs2 file systems.
 - Test NFSv4.1 access from clients to local file systems on data servers.
- Measure performance of three-tier system with multiple clients and single DS, MDS, and SS.
- Incrementally add DSs until resources are depleted.

Linux SS Calibration Results

- Isolated test cases shows storage server local read throughput performance of 1300 MiBps.
- NFSv4.1 throughput between one data server and one storage server (over iSCSI) yields 109 MiBps.
- Throughput between one pNFS client and one data server measures 100 MiBps.
- Aggregate throughput between multiple clients to multiple data servers exceeds 100 MiBps.

Linux SS Results

Linux SS Results (cont.)

pNFS Scalabilty at 100Mbps Network Speed Linux Storage Server

Windows SS Calibration Results

- Isolated test cases show storage server local read throughput performance of ~1100 MiBps.
- pNFS client to data servers performance remained unchanged. (We didn't touch that layer.)
- However, communication between our storage server and data servers was different than in Linux.
- **Iperf results** show **linear performance scaling** with number of nodes until the sixth node is introduced.
- ISCSI results also show linear performance scaling with number of nodes until the sixth node is introduced.

Calibration Graphs

of PDSIS used in Testing

Native Windows iSCSI Performance IOzone 20GB Files 256KB Record Size

Windows SS Results

pNFS Scalability

Windows Storage Server

Other Things We've Tried

- Linux SS:
 - AoE: ATA over Ethernet
 - Terrible read performance
 - NBD: Network Block Device
 - Equally as good as iSCSI between data servers and storage server, but couldn't reproduce results.
- Windows SS:
 - Starwind iSCSI
 - Propietary 30-day trial, CPU bottleneck

Thoughts

- Stripe Size testing
- Suggestions?