

CITI Technical Report 04-02

NFSv4 and High Performance File Systems:
Positioning to Scale

 Dean Hildebrand Peter Honeyman
 dhildebz@eecs.umich.edu honey@citi.umich.edu

ABSTRACT

The avant-garde of high performance computing is building petabyte storage
systems. At CITI, we are investigating the use of NFSv4 as a standard for fast
and secure access to this data, both across a WAN and within a (potentially
massive) cluster. An NFSv4 server manages much state information, which
hampers exporting objects via multiple servers and allows the NFSv4 server to
become a bottleneck as load increases. This paper introduces Parallel NFSv4,
extending the NFSv4 protocol with a new server-to-server protocol and a new
file description and location mechanism for increased scalability.

September 1, 2004

Center for Information Technology Integration
University of Michigan

535 W. William St., Suite 3100
Ann Arbor, MI 48103-4978

NFSv4 and High Performance File Systems:
Positioning to Scale

 Dean Hildebrand Peter Honeyman
 dhildebz@eecs.umich.edu honey@citi.umich.edu

1 Introduction
The avant-garde of high performance computing is
building petabyte and beyond storage systems [1-3].
I/O is quickly emerging as the main bottleneck limiting
performance in these systems, making the need for
scalable file access increasingly urgent.

Many of the techniques for improving scalability of a
distributed file system, such as replication and client
caching, are unsuitable. Many clients cannot cache a
gigabyte of data and many servers lack the resources to
replicate it. At CITI, we are engineering NFSv4 [4] for
use as a universal standard for fast and secure access to
data, whether across a WAN or within a (possibly
massive) cluster. NFSv4 has tightly integrated
mandatory security as well as support for aggressive
client caching, anticipating efficient and secure WAN
access. Support in NFSv4 for caching, locking, and
delegation suggest the potential for superior
performance both in a cluster and across a WAN.

An NFSv4 server manages much state information,
which interferes with access to files (or portions of
files) through multiple servers. The constraint of a
single server becomes a bottleneck as load increases. In
this white paper, we introduce Parallel NFSv4, which
extends the NFSv4 protocol to support distributed state
maintenance. This includes a new server-to-server
protocol to manage the global state of the system and a
new file description and location mechanism. The goal
of our design is to enable access to data repositories for
data collection and post-analysis with orders of
magnitude improvements in capacity and bandwidth
while enforcing and preserving consistent and secure
shared access.

1.1 Runtime State in the NFSv4 Server

In addition to some basic information about clients,
users, and files, an NFSv4 server keeps track of share
reservations, byte-range locks, and delegations.

A share reservation is a mechanism to control access to
a file, comparable to whole-file locking. When a client
issues an OPEN request, it specifies the type of access
required (read, write, or both) and the type of access to
deny to others (deny none, read, write, or both). The
server maintains this information to ensure that future

OPEN requests do not conflict with the current share
reservations. Each client determines the unit of share
lock granularity–known to the client as the open
owner–which may be a process id, an inode, a user
credential, or any other grouping of client resources that
access the files.

NFSv4 supports two styles of record locking:
mandatory locks and advisory locks. Like share
reservations, a lock owner is associated with each lock
to identify the group of processes on a client accessing
a file.

The server passes control of a file to the client, at the
server’s option, in response to an OPEN request. These
delegations come in two flavors, read delegations and
write delegations. To prevent inconsistent access, the
NFSv4 server must remember all outstanding
delegations on a file so that callbacks can be issued
when needed.

1.2 Exported File System Models

The high performance community uses parallel and
cluster file systems to access and store data. For
NFSv4 to become successful in the high performance
community, it must be able to scale with these file
systems.

Cluster file systems such as GPFS [5] provide a
consistent view of a file system from all nodes.
Scalability is in direct proportion to the number of
nodes and disks in the system. By distributing servers
over the nodes in the cluster file system, Parallel NFSv4
can utilize this scalability to overcome the bottleneck in
the NFSv4 single server design.

Parallel file systems such as Lustre [6] provide clients
with direct access to file system data. Replicated
failover metadata servers maintain a transactional
record of high-level file and file system changes. Data
is striped across nodes that handle all of the interaction
between client data requests and the underlying
physical storage. Parallel NFSv4 extends the NFSv4
protocol also supports the parallel file system model,
allowing direct access to its data.

 2

2 Related Work
NFSv4 is a new protocol still in its initial
implementation stage, so no scalability experiments
have been published, but work based on NFSv3 has
been reported. Juszczak [7] implemented write
gathering on the server, which combined several
metadata updates to the same file into a single disk
operation. This helps reduce server CPU and disk
usage.

Not Quite NFS [8] and Spritely NFS [9] added soft and
hard state respectively, to the server to achieve full
cache consistency. Spritely NFS influenced the design
of NFSv4 delegations. While these techniques improve
performance for a single client, this paper focuses on
scaling the number of clients.

Extensions proposed by Peter Corbett and Dave
Noveck from Network Appliance to the NFSv4
protocol intend to scale the number of clients in the
system by enabling the NFSv4 server to stripe file data
across multiple servers, transforming NFSv4 into a
parallel file system. These extensions do not improve
the read and write throughput for underlying cluster and
parallel file systems, which is the primary goal of this
paper.

3 Design
The design goals of Parallel NFSv4 are:

• No impact on the NFSv4 security model.
• Minimal impact on NFSv4 fault tolerance

semantics.
• Minimal increase in network traffic.
• Extensibility.
• Agnostic support for underlying parallel file

system.

To export a file from multiple NFSv4 servers, the
servers need a common view of state. NFSv4 servers
must therefore share copies of the state information,
and must do so consistently, i.e., with single-copy
semantics. We propose a state server to distribute the
portions of state needed to serve READ and WRITE
requests from data servers. The architecture of our
design is shown in Figure 1. Throughout our design,
we pay particular attention to the amount of additional
communication needed to maintain consistency.

When an NFSv4 server receives an OPEN request from a
client, it creates and maintains associated state. This
state includes the open owner, the open owner’s
access/deny permissions, the file handle, etc. We
distribute this state among the data servers with a
server-to-server protocol. The server then returns to the
client the address of the data servers that manage the

NFSv4
Clients

NFSv4 State Server

NFSv4 Data
Servers

Storage Network

Figure 1: Parallel NSFv4 Architecture.
Storage is accessed through the Linux VFS interface to a cluster or
parallel file system, such as GPFS or Lustre. NFSv4 servers are
divided into data servers, which handle all READ and WRITE
requests, and a state server, which handles all other requests.

requested data. The client directs READ and WRITE
requests to these data servers. Once the client has
completed all I/O requests on the open file, it sends a
CLOSE request to the state server. The state server then
reclaims the state from the data servers that previously
received the state for this file and open owner.

3.1 Configuration and Setup

The mechanics of a client connection to a server is the
same as the standard NFSv4 protocol. However, here
the client mounts a state server, not the data servers.
Initially, we anticipate a single state server.

At start-up, data servers contact the state server and
register as available data servers. Data servers are
allowed to register with the state server at any time.
The newly registered data servers are immediately
available to NFSv4 clients for access. This allows easy
incremental growth.

3.2 Server-to-Server Protocol

To process a READ or WRITE request, a data server must
have an accurate picture of the current state of the
system, such as the access rights of an open owner or
the lock owner on a file. To provide this view, when
the state serve receives an OPEN request, it first
determines which data servers have registered to
service the data request. It then creates the appropriate
state for the request and transfers that state to the data
servers it selected.

The following items constitute a unique identifier for
share state:

• Client Name • Access Bits
• Client Verifier • Deny Bits
• Client IP Address • File ID
• State Owner ID

File handle lock state has three additional items:

• Start byte • Lock type

 3

• End byte

On receiving this gift from the state server, the data
server proceeds to recreate the NFSv4 state structures
so that its view of the state for the file matches that of
the state server. The data server can use the file handle
to create export related data structures at this time or
wait for a client to perform a PUTFH. Once the data
server indicates that the state is successfully created, the
state server refers the client to the data server.

On receiving a CLOSE request from the client, the state
server contacts the data server to reclaim the state.
Once the reclamation is completed, the standard NFSv4
close processing is executed.

3.2.1 Distribute State Operations

Each type of state requires a separate RPC call from the
state server to data server. This section lists the
arguments required for share, lock, and delegation state
distribution.
const NFS4_FHSIZE = 128;
typedef opaque nfs_fh4<NFS4_FHSIZE>;
typedef uint64_t clientid4;
struct stateid4 {

uint32_t seqid;
opaque other[12];

};
enum nfs_lock_type4 {

READ_LT = 1,
WRITE_LT = 2,
READW_LT = 3,
WRITEW_LT = 4

};
struct deleg_type {

READ_LT = 1,
WRITE_LT = 2

};
struct DISTRIBUTE_SHARE_STATE_ARGS {

clientid4 client;
stateid4 state;
uint32_t access_bits;
uint32_t deny_bits;
nfs_fh4 file_handle;

};
struct DISTRIBUTE_LOCK_STATE_ARGS {

clientid4 client;
stateid4 state;
uint64_t offset;
uint64_t length;
nfs_lock_type4 type;

};
struct DISTRIBUTE_DELEGATION_STATE_ARGS {

clientid4 client;
deleg_type type;
stateid4 state;

};

3.2.2 Recall State Operations

The state server invalidates state previously distributed
to a data server using a single RPC operation.
struct RECALL_STATE_ARGS {

clientid4 client;
stateid4 state;

};

3.3 Redirection of Clients

The NFSv4 protocol recommends support for the
attribute and associated error code NFS4ERR_FS_MOVED
to allow migration or replication of an entire file
system. To support client redirection, we extend
FS_LOCATIONS and NFS4ERR_FS_MOVED by defining a
new attribute and error code, FILE_LOCATIONS and
NFS4ERR_FILE_MOVED, respectively. The new attribute
allows redirection at the granularity of a file or portion
of a file. As with FS_LOCATIONS, a client may request
the FILE_LOCATIONS attribute at any time or be directed
to retrieve it when it receives the
NFS4ERR_FILE_MOVED error code.

The FILE_LOCATIONS attribute includes these fields:

• List of data servers
• Time-to-live parameter
• Per data server root pathname
• Per data server supported operations
• Per data server lease maintenance indicator

Clients use this information to direct read and write
commands (and others) to one of the data servers. The
time-to-live parameter indicates the lifetime of the
attribute. The root pathname allows each data server to
have its own namespace. The supported operations
mask declares which operations the data server will
accept, e.g., read-only, etc. The lease maintenance
indicator informs the client whether it must maintain
leases on the state server, data server, or both.

3.4 Striped File Support

To support the export of files that are striped across
multiple data servers, we extend the FILE_LOCATIONS
attribute to include, for every data server, the byte
ranges it exports. A more compact option is for
FILE_LOCATIONS to include file layout properties (stripe
size, layout pattern, etc), but this requires co-ordination
with the underlying file system.

3.5 Load Balancing

The state server controls the lifetime of the
FILE_LOCATIONS attribute through the time-time-live
parameter. This allows the state server to load balance
client requests among the data servers in replicated and

 4

cluster file system environments. Depending on the file
access semantics of a system, a system administrator
can customize the load-balancing algorithm to provide
optimal utilization of resources.

The factors that directly affect the load-balancing
algorithm include:

• Number of data servers
• Proportion of read-only data servers
• Predicted average file size
• Predicted number of users
• Predicted file access pattern

4 Fault Tolerance
The addition of data servers in our design allows us to
improve NFSv4’s recovery strategy. Having multiple
NFSv4 servers removes a single point of failure in the
system. If the state server crashes, on recovery it can
effectively use the data servers as stable storage to
regenerate the system state and continue operation. A
disadvantage of multiple NFSv4 servers is maintaining
consistency of global state–the single point of failure is
replaced with numerous points of failure. These
failures are no longer fatal to system operation, but
clients and servers now require extra processing to
ensure consistency and to minimize access failures.

5 Security
NFSv4 mandates the use of RPCSEC_GSS [10] as its
security mechanism to enable strong security.
RPCSEC_GSS uses the GSS-API, allowing various
security mechanisms to be used by the RPC layer
without additional implementation overhead. The
addition of data servers to the NFSv4 protocol does not
require extra security mechanisms. The client
continues to use the SECINFO command to negotiate
the security protocol with the state server. Server
implementations must also ensure the protection of the
new server-to-server protocol.

6 Other Considerations
Determining when to reap a client’s state is more
complex when using multiple data servers because
implicit renewals are distributed. One option is for data
servers to inform the state server at regular intervals of
all clients with which they have interacted. If any
available data server does not report a client as active
for some period, the state server invalidates the state.

7 Conclusion
This white paper presents a design that increases the
scalability of NFSv4 by allowing the export of a single

file via multiple NFSv4 servers. We make two
contributions with this work. The first is a server-to-
server protocol for NFSv4 that enables distributed state
and file metadata maintenance. A state server manages
all state information and distributes state to date servers
as required. This reduces communication overhead by
distributing state only to the necessary servers. The
second contribution is the FILE_LOCATIONS attribute,
which enables an NFSv4 server to migrate or replicate a
single file or portions of a file.

References

[1] ASCI Project Team, ASCI Purple RFP,
Attachment 2, DRAFT STATEMENT OF
WORK, Version 9. Livermore, California,
February, 2002.

[2] "Earth Simulator Project," presented at
SuperComputing 2002.

[3] "Fermi National Accelerator Laboratory
http://www.fnal.gov/."

[4] S. Shepler, B. Callaghan, D. Robinson, R.
Thurlow, C. Beame, M. Eisler, and D. Noveck,
"Network File System (NFS) Version 4
Protocol," http://www.ietf.org/rfc/rfc3530.txt,
April 2003.

[5] Frank Schmuck and Roger Haskin, "GPFS: A
Shared-Disk File System for Large Computing
Clusters," presented at USENIX Conference
on File and Storage Technologies, 2002.

[6] Peter J. Brahm, "Lustre: A Scalable, High-
Performance File System," 2002.

[7] Chet Juszczak - Digital Equipment
Corporation, "Improving the Write
Performance of an NFS Server," Proceedings
of the {USENIX} Winter 1994 Technical
Conference, pp. 247--259, 1994.

[8] Rick Macklem, "Not Quite NFS, Soft Cache
Consistency for NFS," Proceedings of the
{USENIX} Winter 1994 Technical Conference,
pp. 261--278, 1994.

[9] V. Srinivasan and Jeffrey C. Mogul, "Spritely
NFS: Implementation and Performance of
Cache-Consistency Protocols," Western
Research Laboratory, Palo Alto, California
May 1989 1989.

[10] M. Eisler, A. Chiu, and L. Ling,
"RPCSEC_GSS Protocol Specification," RFC
2203, September 1997.

 5

http://www.fnal.gov/.
http://www.ietf.org/rfc/rfc3530.txt

	Introduction
	Runtime State in the NFSv4 Server
	Exported File System Models

	Related Work
	Design
	Configuration and Setup
	Server-to-Server Protocol
	Distribute State Operations
	Recall State Operations

	Redirection of Clients
	Striped File Support
	Load Balancing

	Fault Tolerance
	Security
	Other Considerations
	Conclusion

