CITI Technical Report 06-02

Reliable Replication at L ow Cost

Jiaying Zhang
jiayi ngz@ecs. um ch. edu

Peter Honeyman
honey@iti.um ch. edu

Abstract

The emerging global scientific collaborations demand aasita) efficient, reliable, and still convenient data acesssmanage-
ment scheme. To fulfill these requirements, this paper dexca replicated file system that supports mutable (i.ad/veite)
replication with strong consistency guarantees, smafopgiance penalty, high failure resilience, and good sgafiroper-
ties. The paper further evaluates the system using a reaitgad application. The evaluation results show that tresented
replication system can significantly improve the applima8 performance by reducing the first-time access latemcgdd the
input data and by distributing the verification of data asdesa nearby server. Furthermore, the penalty of file rejpticas
negligible as long as applications use synchronous writasr@oderate rate.

January, 2006

Center for Information Technology Integration
University of Michigan
535 West William Street
Ann Arbor, MI 48103-4978

Reliable Replication at Low Cost

Jiaying Zhang Peter Honeyman
jlayingz@umich.edu honey@citi.umich.edu
1. Introduction mode. The scientist cannot view the intermediate results

o) . i before the entire scheduled job is complete. Since scientifi
The scientific community has seen an increasing demandsmy|ations are problem-prone, needing to wait for hours or
for global collaborations, spanning disciplines from high gays 1o discover a mistake in the experiment s inefficient.

energy physics, to climatology, to genomic. Applicatioms i To facilitate Grid computing over wide area networks,
these fields make intensive use of computa}tlonal resourcegye develop a replicated file system that provides users high
far beyond the scope of a single organization, and requiréperformance data access with the standard file system se-
access_to massive amounts of (_jata. This_im_posgs new chals,antics. The system supports a global name space and lo-
lenges in data access, processing, and distribution. cation independent naming, so applications on any client
Driven by the needs of scientific collaborations, the can access a file with the same name and without needing
emerging Grid infrastructure [8, 9] aims to connectglopall o know where the data physically locates. It supports muta-
distributed resources to a shared virtual computing amel sto pe replication, i.e., read/write replication, with costsincy
age system, offering a model for solving large-scale com- gyarantees, so users can perform data modification easily,
putation problems. The sharing in Grid computing is not safely, and efficiently. The semantics that the system pro-
merely file exchange but rather the direct access to computyjiges is compatible with POSIX API, allowing easy deploy-
ers, software, data, and other resources, as is required by ghent of unmodified scientific applications. We have imple-
range of collaborative scientific problem-solving pat&ern mented our design in NFSv4, the emerging distributed file
Presently, the primary data access method used on Gridsystem standard [19]. In latter discussion, we refer to the

is GridFTP [21]. Engineered with Grid applications in jmplemented replication system eFS for short.
mind, GridFTP has many advantages: automatic negotia-

tion of TCP options to fill the pipe, parallel data transfer,

integrated Grid security, and partial transfers that carebe Cluste o igh

Visualization performance
sumed. In addition, as an application, GridFTP is easy to ULl oo
u S
] % i

install and support across a broad range of platforms.
While simple and easy to implement, as a remote file File replcation

transfer protocol, GridFTP does not support sophisticated nISIATLAS userlbobiexp1
distributed sharing that many Grid applications would re-

e rey
server
mfs/ATLAS/user/bob/exp1

quire, which impedes theonvenient use of globally dis- i (S350 [i rstcton s
tributed resource§ for scientific stughes. o e TLAS oo cbnp1 .
For example, in a common Grid use case, a scientist e ==

wants to run a simulation on high performance comput-

ing systems_and anaIyze_ resultg on a visualization systgm. Figure 1: A Grid use case example.

With t_he Gr,'d teChnOIF)g'es available today, the scientist The figure shows a common Grid scenario. In the example, by

submits the job to a Grid scheduler, such as Condor-G [11]. gmpjoying a replicated file system, the remote computatimes

The Grid scheduler determines where to run the job, pre-can access data from a nearby server. Meanwhile, the stieati

stages the input data to the running machines, monitors thesiew intermediate results and adjust experiment in reatim

progress of the running job and when the job is complete,

transfers the output data to the visualization system tjimou Under rNFS, the scientist in the example described above

GridFTP. The output data is reconstructed in the visualiza- can now monitor and control the progress of the simulation

tion site, and the final results are returned to the scientistin real time. As illustrated in Figure 1, with the support

after reconstruction. of a global name space, the scientist can run programs on
The scenario is attractive as the scientist now is able toremote machines with the same pathname and without any

use more computing resources to speed up his simulationreconfiguration. By using a replicated file system, the in-

However, the whole process is still performed in a batch termediate output of simulation is automatically disttézl

to the visualization center and the scientist's computee T When a client first accesses a replicated directory, theserv
scientist can view intermediate results and determine-if pa uses the attached reference string to resolve the replica lo
rameters or algorithms need to be adjusted. If so, he cancations of that directory, and sends this information to the
update them from his local computer and restart the sim-client through thé=S_LOCATI ONS attribute.
ulation on the remote site, as simple as if he was running
the experime_nt locally. Meanwhile, the remote computation 2.2. Mutable Replication
nodes can still access data from a nearby server. o -)
The remainder of the paper is organized as follows. We To meet .avaiulablhty, pgrformance, and scalab|I|.ty requir
first give an overview of the system architecture in Section MeNts, distributed services naturally turn to replicatide
2. Then we focus the major part of the paper on applica- S€TVice is no exception. While the concept of file sys-
tion evaluation, with which we examine how the system per- (€M replication is not new, existing solutions either féesa
forms over wide-area networks and what performance ben-"€ad/write replication totally [4, 23, 26] or weaken consis
efit it can provide to Grid applications. Section 3 presents ©€Ncy guarantees [14, 24]. They fail to satisfy the require-
the experimental results we collected, as well as the eetail MeNts for global scientific collaborations. .
data analysis. Following that, we review the related work in Returning to the example described in Section 1, exper-

Section 4, and conclude in Section 5. iment analysis is usually an iterative, collaborative |esx
The stepwise refinement of analysis algorithms requires us-
2. Desi gn and Architecture ing multiple clusters to reduce developmenttime. Although

.])]] . the workloads during this process are often dominated by
This section describes a replicated file system designed tqgaq, they also demand the underling system to support

facilitate the data access and management of large-s¢ale scyyyite operations. Furthermore, strong consistency guaran
entifi_c applications. Section 2.1 presents the design of aees are often taken for granted, e.g., an executable may in-
naming scheme that supports a global name space and logorporate user code that is finished only seconds before the
cation independent naming. Following that, Section 2.2 de- g ,pmission of the command that requires to use the code.
scribes a replication protocol that provides mutable oepli In this section, we present a mutable file replication pro-
tion support with strong consistency guarantees. tocol that balances the tradeoff among consistency, per-
. formance, and failure resilience by offering applications
2.1. Name Space Design stringent yet flexible consistency guarantees. The prbtoco
The NFSv4 protocol includes features to support read- can guarantee either ordered writes or synchronized gccess
only file system replication using a special file attribute without adding overhead on normal reads. It can tolerate
FS_LOCATI ONS. By the NFSv4 specification, a client's first 3 |arge class of server crash or link failures, even when
access to a replicated file system yieldsfSeLOCATI ONS these lead to network partitioning. Our design uses stan-
attribute that lists alternative locations for the file syst dard POSIX features, which makes it easy to deploy.
Complying with the published NFSv4 protocol, we also use Below, we first describe a replication scheme that guar-
the FS_LOCATI ONS attribute to communicate replica loca- gntees ordered writes. Based on that, we present the addi-
tion information between servers and clients. However, the tignal mechanisms to enforce synchronized access. In the
namespace of INFS includes two extended features. following discussion, we refer the first consistency model
First, we extend NFSv4 client side to support a global a5 sequential consistency, and the second as synchronized
name space that hides server location details from users. Byyccessed. We note that we only highlights the important
convention, a special directoynf s is the global root of features of INFS here for evaluation purpose. For more de-

all NFSv4 file systems. Entries undenf s are mounted sign details, readers can refer to another paper [27].
on demand. The first time a user accesses any NFSv4 file

system, the referenced name is forwarded to a daemon tha& 21, Sequential Consisten
gueries DNS to map the given name to one or more file ==~ &y
server locations, selects a file server, and mounts it at theBy default, our replication protocol guarantees ordered
point of reference. The format of reference names underwrites in which replication servers do not necessarily see
/ nf s follows Domain Name System [16] conventions. We updates simultaneously, but they are guaranteed to see them
use SRV Resource Record [17] to store server location in-in the same order. In this model, when a client opens a
formation. The content of a SRV RR maps a reference naméfile for writing, the chosen server temporarily becomes the
to a list of file servers that hold the copies of data. primary server for that file. All other replication servers
The second extended feature is the support for directoryare instructed to forward client write requests for that file
replication. We implement directory replication by export to the primary server. When the file is closed, the primary
ing a directory with an attached reference string that in- server withdraws from its leading role by notifying other
cludes information on how to get directory replicalocation replication servers to stop forwarding writes. In the fallo

ing discussion, we refer to the first procedure as disabling2.2.2. Synchronized Access

replication, and the latter as re-enabling replication. To support synchronized access without imposing overhead
The idea of using primary copy to support data replica- on applications that require ordered writes only, we pro-
tion or backup is not new [12, 15]. However, compared yide synchronization guarantee as an option that can be
with the traditional primary copy scheme, our design has gemanded by applications through POSIX synchronization
the following advantages. First, in INFS, the overhead to flags in the open system call interface [3].
support mutab_le replication is induced_only when there are By the POSIX specification, if an application opens a
writes happening. If there are no writes, the system be-fje \yith 0.SYNC flag set, a subsequent write operation is
haves as a read-only replication system, i.e., a client ac-compjete only when the written data and all file attributes
cesses data from a nearby server. Second, a primary Servegative to the operation, e.g., modification time, is veritt
is selected on the granularity of a single file, and thus al- , the permanent storage; if an application opens a file with
lows fine-grained load balancing. Third, in NFS, a primary p,h 0.SYNC and O.RSYNC flags set, a read operation is
server is dyn_amically chosen at thg time_ that a file is V_/rite complete only when any pending writes affecting the data to
opened. So in most cases (exclusive write cases), a clientgq read is successfully transferred to the requesting psoce
write requests are served by a nearby primary server. Fur- Our system takes these flags as the hint that the applica-
thermore, the solution well suits the Grid computing envi- tion is demanding synchronized access. When the primary
ronment where a replica can be dynamically created and itserver receives a synchronous write request (i.©.SYNC
is hard to decide an optimal primgry server for afile befqre- flag of the file is set or if the file owner requests a fsync)
hand. And fourth., we develop'a faﬂurg recovery mechanism from a client, it must ensure that every replication server
that conforms with the described primary copy m°9'e'- S has acknowledged its role before returning a reply to the
next paragraph presents. We note foremphasis thatin rNFScIient. By default, a replication server forwards write re-
failure detection and recovery are df“’e“ by client aceEsse guests only While’ its replication is disabled. However, if
S0 no heartbeat messages or special group commumca‘uoﬁuring this period, a client opens the file with synchronous

services are needed. read requirements (i.e., ®.SYNC and O_.RSYNC flags of

To guarantee consistency upon failures, every replicationthe file are set), the replication server forwards the ckent
server keeps track of the liveness of other servers. The set Oread requests to the primary server as well.

live servers is called the active view. To avoid unnecessary jth the described mechanism, slight overhead is in-

network traffic, we do not use periodic heartbeat to maintain gced to guarantee synchronized access when applications
active view. Rather, in our system, active view is refreshed yemand it; longer delay is charged on forwarded operations
during updates. Basically, during file modification, the-pri it concurrentwrites occur; If a file is not under modification
mary server removes from its active view any server that 5y read requests for the file, even those with synchroniza-

fails to respond to its request. The primary server can ac-tjg requirement, are processed by a nearby server.
knowledge a client write request only if it receives acknowl

edgments from a majority of replication servers. When the
file is closed, the primary server sends its active view to
other active servers. A server not in the active view may There are two primary reasons to maintain consistency
have stale data, so the active servers refuse any laterstequeamong replication servers: first, to guarantee data diiiabil
that comes from a server not in its active view. A failed (j.e., no data lost) after recovery of failure; and second, t
replication server can rejoin the active group only after it guarantee correctness during concurrent writes. The gecon
synchronizes with the up-to-date copy. reason involves two cases. The first is to guarantee write or-
By requiring a distributed update to reach a majority of dering with multiple writers, and the second is to guarantee
replication servers before replying to a client write resfue synchronization for simultaneous read and write.
rNFS can automatically recover from a failure (including To guarantee data durability, we require a distributed up-
primary server failure and partition failure) and continu- date to reach a majority of replication servers before reply
ously serve client requests as long as a majority of the-repli ing to a client write request, so the system can always find
cation servers are in working order. In our system, updatea valid copy (i.e., a copy that reflects all the acknowledged
distribution is performed in parallel. So the system perfor writes) in the majority partition if a failure occurs. In aed
mance is not affected by occasional message delays or thé¢ion to that, we develop two consistency models: sequential
failure of a minority of the replication servers. Furthem®o consistency and synchronized access consistency. The first
the response time for a client write request is determined byconsistency model guarantees ordered writes with the pri-
the median RTT between the primary server and the repli-mary server as a central point to decide the order of writes.
cation servers. In the latter discussion, we refer this R T a The second consistency model further guarantees that a syn-
majority RTTfor short. chronous read reflects the most recent write by ensuring

2.2.3. Summary and Discussion

that every replication server has noticed that the file is un- 3. Evaluation
der modification upon synchronous writes, and that a syn-
chronous read request is processed by the primary server.
We can observe that in the synchronized access model
a primary server can not be elected even if a single repli-
cation server fails. So compared with the sequential con-
sistency model, synchronized access provides stronger con
sistency guarantee but less failure resilience. Although o

After highlighting the important features of our system, in
this section, we explore the performance of INFS with a
real scientific application over the simulated wide-areta ne
works. The application we use is from the Atlas simu-
lation software, a cluster-based, data-intensive, disted
program poised for deploymentin Grid. For evaluation pur-
pose, we focus on the usage scenarios similar to the one

system provides different failure resilience in the suppbr) A
) . . : . depicted in Figure 1. However, we expect that many of our
different consistency requirements, these design chaiees i
finds apply to other scenarios as well.

based on the same principle, namely, to offer applications a . . .
P P y bp We measured all the experiments presented in this pa-

reliable data service. : . A
. N L . per with a prototype implemented in Linux 2.6.12 kernel.
We notice that for scientific applications, losing compu- Servers and clients all run on dual 2.8GHz Intel Pentium4
tation results can cause expensive cost, and sometimes eve&ocessors with 1024 KB L2 cache, 1 GB memory, and dual

correctness problems. E.g., scientific applications Wisual o) 85547/ Gigabit Ethernet cards onboard. The num-
keep track of their computation progress through log files. ber of bytes NFS uses for reading (rsize) and writing files

Suppose that a failure occurs after an application just Com'(wsize) are set as 32768 bytes. In all experiments, we use

pletest SOTﬁ (t:ompg(tjatlon agdtregordz-mat ina IO? file. In NistNet simulator [7] to simulate the network delays. All
a system that provides no data durabiiity guarantee, every, g presented are mean values from three trials of each

tf;o;J%h ttr;1e log f'lﬁ |nd|cat§s tlhattth;at computation ?is _(l:om'experiment; standard deviations (not shown) are within five
pleted, the results may be lost after recovery of failure. percent of the mean values.

Hence, the user cannot tell where the computation should Below, after a brief description of the Atlas software,

be restarted. . . . L
i) .. we describe the experiments with these applications and
Based on these considerations, we develop a rePI'Cat'orbresent the evaluation results.

protocol that always guarantees durability of written data
acknowledged by the server. Under this prerequisite, the L
system makes the best effort to mask a failure from appli- 3-1- Atlas Applications
cations. However, in case of a non-recoverable failure, we Atlas is a particle physics project that searches for new dis
elect to report the failure to the application immediataly, coveries in the high-energy proton collisions [1]. The pro-
stead of masking it, which risks losing the results of a com- tons will be accelerated in the Large Hadron Collider accel-
putation or executing incorrect programs. erator, currently under construction at the European Lab-
Another issue introduced in the synchronized accessoratory for Particle Physics (CERN) near Geneva [2]. The
model is that existing programs may not use open synchro-accelerator is expected to start operating in 2007. Aftat; th
nization flags to specify their consistency requirements ason the order of a petabyte of raw data will be produced each
we expect. Thus modifications are required on the pro-year and distributed to a multi-tiered collection of decen-
gram’s open calls to ensure synchronized access. As dralized sites for analysis. Atlas is the largest collativea
makeshift, we can provide synchronization support as aeéffort ever attempted in the physical sciences. 1800 physi-
mount option so that the current applications can be de-Cists from more than 150 universities and laboratories in 34
ployed without any modification. However, we still rec- countries participate in this experiment. With the massive
ommend the proposed approach for it allows applications toamount of data to be processed and the widely distributed
control file sharing behavior more flexibly. Consider the ex- collaborators, Atlas stands to benefit from a scalable and
ample of an edit-and-run procedure. The program is editedreliable data access and management scheme, which is also
on one client, and then a number of clients are instructed towhat our design targets.
execute it. Because the execution instruction can be issued Currently, Atlas is performing large-scale simulation of
immediately after the program editing, the access on the filephysics events that will occur within an Atlas detector.
must be coordinated. In rNFS, correct synchronization be- These simulation efforts support detector design and the de
havior can be guaranteed if the editor application issues avelopment of real-time event filtering algorithms that are
fsync system call after completing the editing, and the ex- critical for controlling the flood of data when LHC acceler-
ecution application opens the file with bothSYNC and ator is running.
O.RSYNC flags set. On the other hand, another application, The Atlas simulation event data model consists of four
e.g., a snapshottool, can choose to open the file without setstages. The first stagyent Gener ati on, uses a seed
ting any synchronization flags as sequential consistency isto produce pseudo-random events drawn from a statistical
sufficient to guarantee its correctness. distribution deduced from other experiments. The second

stage,Si mul at i on, reads the generated events and sim-

ulates the passage of particles through the detectors. The

third stagepPi gi ti zat i on, converts simulated hit events QT %ﬂ Q
into digital outputs (called digits). The digits are fed to -
the fourth stageReconst r uct i on, which performs pat-

tern recognition and track reconstruction algorithms,-con

verting raw digital data into meaningful physics quanstie 5@ Q
The four stages have different computational requirements ~ cwen: = s &7 ctent2

and generate different amounts of output data. For example, Midway model
when processing 1000 events on a dual 2.4 GHz Pentium4

processors with 1 GB memongvent Generati on _ v

takes two minutes to finish and generates 20 MB of out- @i Tg
put; Si mul at i on stage takes 33 hours and generates 800 ' ™") seerz - cllentz
MB; Di gi ti zat i on takes 8 hours and generates 1.6 GB; eptestonmose!

andReconst r uct i on takes 8 hours to finish, generating

8 to 20 MB output data.

Local-Remote model

Figure 2: Atlas evaluation experiment setup.

In this paper. we skio over discussion of the first two The figure illustrates the experimental setup for the Atheie
IS paper, w Ip oV ISCUSSI ! ations. We compare the performance of three distributiod-mo

stages: the time spent @vent CGenerationisconsid- g5 and use two clients in each of them. In Local-Remote model
erably less than the other three, wiiienul at i on is ut- the clients access data from a single server located on @Ee's!
terly CPU bOUnd, thus Atlas performance is not I|ke|y to be LAN. In |\/||dway model, we p|ace a Sing|e server half way be-
sensitive to our work on the 1/O side. Our analysis focuses tween the two clients. In Replication model, we place a capion
onDigitizationandReconstructi on, where we server on each of the client's LAN.

want to investigate the performance of rNFS from the fol- .04 on one client’s LAN. In the Midway distribution, we

Iowmg two aspects.) L place a single NFS server half way between the two clients.
First, to demonstrate the benefit of server replication for |, e Replication distribution model, we place a replioati

global-scale scientific applications and to quantify thetco gapver on each of the client's LAN.

of remote replication for write operations, we compare the In the experiments presented in this subsection, the num-

performance of rNFS against single server configuration o, o events to test is set to 100, with each client procgssin
with the above Atlas applications. From the evaluation re- 50 events. Our experiments use fiegi t i zat i on and

sults presented in Section 3.2, we can draw two conclusionsReconst ruct i on software from the Atlas 10.0.4 instal-

First, we observe that server replication can significantly |5:ion package. FdReconst r uct i on, we applied all the

‘T“p“_"’e these applications’ performa_nce by reducing thgir algorithms included in the default installation.

first-time access latency to read the input data and by dis- For Local-Remote and Midway distribution models, we

tributing the verification of data access to a nearby server. , '

Second, the penalty of fle replication s slight for applica. PrESent the performance measured with both cold and warm
' P Y P 9 P client caches. With Replication, cache temperature does

tions that write their output results at a moderate rate. not influence the run time of either application: un-cached

Second, to evaluatehour dfeSIgn for S)q(nchronlzeq aCCeSStems are retrieved from the nearby replication server, and
support, we compare the performance of INFS against sin+, o ¢t of those retrievals is minuscule in the contextef th

gle server access with a simple emulated edit-and-run eX-gverall run times of the applications.

ample. The experimentresults presented in Section 3.3 sug- Figures 3 and 4 show the run times for the Atlas

gest that in ”‘.OSt cases, the perfo'rmanc'e penalty 0 guaraNpeconst ructi on and Di gi ti zati on applications.
tee synchronized access in rNFS is negligible.

As the results show, Replication outperforms Local-Remote
) and Midway for both applications. To see just where the
3.2. Performance Comparison performance improvements come from, we further divide
To evaluate the presented replication scheme, we com+he applications into three phases and measured the time
pare the performance of Atlafi gitization and spent on each of them.

Reconst ruct i on with three different distribution mod- In the Set up phase, the applications prepare their run-
els. In each distribution model, we ran the Atlas applica- time environments. In theé niti ali zati on phase,
tions on a pair of NFSv4 clients. We set the RTT between the applications read header files and libraries and link
the two clients to 120 msec, the measupéahg time from them into executables (We measured the initialization time
our experimental test bed to CERN. Figure 2 illustrates the by setting the number of simulation events to 0). The
experimental setups. As shown, in the Local-Remote distri- Execut i on phase processes events; we calculate the
bution, the clients access data from a single NFS server lo-Execut i on time by subtracting the time spent on the first

@ setup W initialization O execution |msetup m iniiaization 0 execution
7000 7000
S 6000 — 6000 ’—‘
g
& 5000 - S 5000]
£ 2
2 4000 % 4000
= £
S 3000 1 = 3000 |
3 2
£ 2000 + S 2000
2)
8 1000 2 1000
o
04 : ; ; 04 ‘ ‘ ‘ ‘

local-remote local-remote midway midway local-remote local-remote midway midway

cold cache warm cache cold cache warm cache 2 replication coldcache warmcache cold cache warm cache 2 servers

one server one server one server one server servers one server one server one server one server

Figure 3: Atlas Reconstruction. Figure 4: Atlas Digitization.
The figure shows the running time for Atlas Reconstructiom. | The figure shows the running time for Atlas Digitization. kach

each category, the first column shows the run time measured oncategory, the first column shows the run time measured orethe |
the left side client in Figure 2, and the second column shdws t side client in Figure 2, and the second column shows the me@dsu
measured performance on the other client. performance on the other client.

two phases from the total running time. Execut i on with aremote server is about 50% more costly

Examining the detailed experimental results presentedthan Executi on with a local server, andxecuti on
in Figures 3 and 4, we see that for both applica- With replication is comparable to the latter.
tions, most performance benefit of replication comes from Although AtlasDi gi ti zat i on generates a significant
Initialization andSetup. We were surprised to amount of output, we were still surprised that the perfor-
find that even with a warm cache, the performance of thesemance penalty for remote replication is so high. So we
two phases still suffers dramatically as the RTT between theexamined the trace data collected during the experiment
server and the client increases. Taking a close look at thatand find that the high performance cost observed during
network traffic with a warm cache client, we were surprised Execut i on is mainly caused by a significant number of
to see that a huge number of file open requests are sent dufsync system calls. I.e., more than 900 fsync calls are used
ing these two phases, as NFSv4 has a delegation schemwith 50 event digitization, compared with 60 fsync calls ob-
that allows a client to perform subsequent open requests lo-served with 50 event reconstruction.
cally after the first call in the absence of shared writers: Fu To estimate the performance of AtlRsgi ti zati on
ther examination reveals that most of these open requestsvithout the impact of the aggressive use of synchronous
were met by No entry exi sts” error, obviating any writes, we eliminate these fsync calls and re-run the exper-
potential delegation advantage. iment. Figure 5 shows the re-measured results. As the eval-

We believe that the applications are issuing these openuation data demonstrates, the performance difference be-
requests as a way of examining the configuration of the localtween local server access and replication becomes smaller,
environment. The cost of doing this on a local or nearby file i.e.,Execut i on with replication is about 20% slower than
system is too small to make a substantial difference in theExecut i on with local access. The remained performance
running time, but begins to have an impact as the server isoverhead is caused by the large bursty writes that exhausts
made more and more remote. Here replication helps by al-the client’s cache.
lowing the open requests to fail on a nearby server, with the We have reported this observation to the Atlas develop-
performance comparable to accessing a single local serverers. It seems that the overwhelming use of fsync is an im-

In theExecut i on phase, Atlai gi ti zat i on pro- plementation issue rather than necessaries. However, such
duces about 7.2 MB of output data per process. The datekinds of problem may not be rare in practice since most
is read byReconst ructi on during theExecut i on programs in use today are developed in local environments.
phase, whose output size shrinks to 1.4 MB in our measure- Because the four Atlas stages are typically run together
ments. Figures 3 shows that for AtlReconst r uct i on, as a pipeline, the above problem can be avoided by keep-
the performance of thExecut i on phase is similarin all ing intermediate outputs in local temporary files and write

three distribution models. However, this is not the case in only final results over distributed file systems. Reseacher
theDi gi ti zat i on stage, as observed in Figure 4. There, have shown that a diamond-shaped storage profile is a char-

O setup Minitialization O execution Q =i g =) =
7000 120 ms EJ 02ms EJ 120ms

Client Server Client Replication Replication
Server Server
6000 - OneServer-120ms 2Rep-120ms

5000

60ms

4000 Replication

Server
30001 g B =) g
02ms EL 120ms %J 0.2ms
2000 4 Client 1 Replication Replication Client 2
Server 3Rep Server
i E m
0 - T T T _ E Q B
Q 02ms

El

T E

local-remote local-remote midway midway 60 ms EJ 60 ms §,
cold cache warm cache cold cache warmcache 2 replication Client Server Client Replication Replication

Server
one server one server one server one server servers OneServer-60ms 2Rep-60ms

60ms

Digitization Time (in seconds)

Figure 5: Atlas Digitization without fsync. Figure 6: Synchronized access evaluation experiment setup
The figure shows the running time for Atlas Digitization with The figure illustrates the experiment setup for synchrahize-
fsync calls removed. cess evaluation. We measured the time to overwrite a fileror sy
chronously read a modified file in five distribution models. In
acteristic behavior among scientific applications [25¢.,1. OneServer-120ms and OneServer-60ms, the client accesses a

small inputs are expanded by early stages into large inter-gle server with the RTTs of 120ms and 60ms, respectively. In
mediate results, which are often reduced by later stages tc?Rep-120ms and 2Rep-60ms, two replication servers are used
small results. This observation implies that it is more ef- With the intermediate RTTs of 120ms and 60ms, respectively.
ficient to store intermediate results in local storage mathe both distributions, the che_nt connects to a repl|cat|0|n_/sem Its

o - LAN. In 3Rep, three replication servers are used with the KTT
than d'Str,'b_Utmg them remotely. HOWE‘_’G“ when making among them set to 60ms, 60ms, and 120ms; the writer (clientl)
such decisions, users should also consider the tradeoff bez the reader (client2) locate remote from each other, anti e
tween performance and the cost to re-compute intermediatggnnects to a server in its LAN.

results if a failure occurs.

We notice that a fundamental problem reflected here is Below, we first describe the experiment setup. After that,

that applications usually use fsync to require differemt-co e report the execution time measured on the writer and the
sistency guarantees without distinction. The cost of doing reader, respectively.

this in a local file system is small, bgt startg to. impact per- \we measured the time to overwrite a file and/or to syn-
formance as the system becomes widely distributed. As angpyronously read a modified file in five different distribu-

alternative solution, we suggest that applications use-asy ion models, as illustrated in Figure 6. In OneServer-120ms
chronous fsync to require data durability guarantee, aed Us 44 OneServer-60ms distributions, the client accesses a si

fsync and open synchronization flags to coordinate concur-gje remote server with the RTTs of 120ms and 60ms, re-
rent accesses. We note that distinguishing the_se qiﬁerengpectively. In 2Rep-120ms and 2Rep-60ms distributions,
consistency requirements not only allows applications t0 yq replication servers are used with the intermediate RTTs
utilize a consistent mutable replication system at lititers of 120ms and 60ms, respectively. In 3Rep distribution

head, but also helps to reduce performance cost in singleye construct an unbalanced configuration by placing three

remote server access. replication servers with the RTTs among them set to 60ms,
60ms, and 120ms.
3.3. Performance of Synchronized Access Figure 7 shows the total time measured on the writer to

This section evaluates the performance of rNFS when syn-overwrite and then fsync a file. In general, replication out-

chronized access guarantee is required. In particular, weperforms single remote server access with the same distri-
take a simple edit-and-run example in which a user editsbution RTT. The performance benefit comes from the re-

a file on one client and starts running it on another client. duced number of remote messages sent to open the file and
For evaluation purpose, we emulate this example by over-to check the file’s access mode and attributes.

writing a file on one client and then immediately reading In rNFS, the primary server needs to guarantee that all
it from another client. To guarantee read-after-write syn- replication servers have acknowledged its role when it re-
chronization, the first client (writer) issues a fsync céiéan ceives a synchronous write request. After receiving replie
overwriting the file, and the second client (reader) uses syn from all other replication servers, the primary server can
chronous reads. reply to a client write request as soon as it gets acknowl-

—O— OneServer-120ms —— 2Rep-120ms —— 3Rep —©— 2Rep-60ms —— OneServer-60ms —%—3Rep-ssh-start -5 OneServer-local —A— 3Rep-nodelay-start ~0— OneServer-120ms
u.b

09
500000
HOOOOOOOOC
L0000 0.8 A

| M 071
|

05

e o
~

o
bS]
o
w
L

write time (s)
o o
w e
read time (s)
o
[$,] [=>]

o

o

4 12 20 28 36 44 52 60 68 76 84 92 100 108 116 124 132 140 148 158 4 16 28 40 52 64 76 88 100 112 124 136 148 160
file size (KB) file size (KB)

Figure 7: Synchronized writes. Figure 8: Synchronized reads.
The figure shows the measured time to overwrite & fsync a file as The figure shows the measured time to synchronously read a file
the file size increases. The experiment setup is shown irré&igu that is just modified on another client. In the experimente 3R
ssh-start and 3Rep-nodelay-start both use the 3Rep caatfigur

edgments from half of the other replication servers. So we 25 4ePicted inFigure 6. In 3Rep-ssh-start, we start redtimgle
9 P) by sending an ssh command from the writer after writes cotaple

egpect that the syn.ch_ronous write performance in rNFS is |, 3Rep-nodelay-start, we starts reading the file immelgiatiter
dictated by the majority RTT rather than the longest RTT fjie modification, without the cross-wire latency betweee tWo
among the replication servers. The measured experimentiients. As comparison, we also present the time measurtd wi
results validate our prediction. As observed, the exenutio both the writer and the reader connecting to a single loaakse
time measured in 3Rep distribution is close to that measuredand a single remote server, as represented by OneSeretatut

in 2Rep-60ms distribution. A slightly longer delay is ob- OneServer-120ms respectively. In OneServer-120ms, thiedeT
served when the file size is small, corresponding to the wait-tween the server and the client is set to 120ms.

ing time when the primary server processes the first syn-

chronous write request. The delay disappears as the file sizenethod, no forwarded reads are observed because the la-
becomes large, because in those cases, when the first syriency of sending an ssh command dominates the delay of
chronous write request triggered by fsync reaches the pri-re-enabling replication. As observed, the read performanc
mary server, it has already received the acknowledgmentsn such cases is similar to that when both the writer and the
from all other replication servers. reader are connected to a single local server.

After evaluating the write performance during synchro- For evaluation purpose, we artificially start reading the

nized access, we now move to the reader side. _ file right after file modification. In this situation, we ob-

~ Figure 8 shows the time to synchronously read a file that sgrye that the first read request from the reader is forwarded
is just modified by the writer. To evaluate the performance iy the primary server. After that, the replication of the file
when read forwarding occurs, we pay special attentions 0re.enapled in the system. So the subsequent read requests
the 3Rep dlstrlbunon.. In rNF_S’ the primary server rES_POHdS are processed by the nearby server that the client connects
to the_ close _reque_st immediately but delays replication re-5 ag Figure 8 shows, the performance with 3Rep-nodelay-
enabling untill all file updates have been acknowledged by giart stays nearly the same as the file size increases, com-
every active replication server. With an unbalanced replic pared with the climbing delay observed when reading the
tion server distribution, a slow or remote server can fall be fjje from a single remote server. The overhead caused by
hind from file modification with a burst of writes. So when e forwarded read request corresponds to the performance
the reader starts accessing the file, the replication on thegifference observed between 3Rep-nodelay-start and read-
server it connects to may still be disabled. As mentioned, ing a single local server, which is about the same as the RTT

the replication server forwards the client synchronoudrea penyveen the replication server and the primary server.

request to the primary server in this case. . o

In the experiments, we first start reading the file on the N summary, the evaluation results presented in this sec-
reader by immediately sending a ssh command from thetion show that usually users observe no additional cost
writer after file modification finishes. The network de- during synchronized access in rNFS; a slight performance

lay between the writer and the reader is set to 120ms, adeenalty is charged in the case that read forwarding does oc-

the experiment setup depicts. However, with this starting CU'» but even then, the performance of rNFS still signifi-
cantly outperforms remote server access.

4. Related Work the lack of supporting fine-grained data sharing semantics.
Furthermore, most of these systems provide extended fea-
tures by defining their own API. In order to use them, an
application has to be re-linked with their libraries.

The emerging large-scale scientific collaborations have
stimulated the growing research in scientific workload stud
ies. Here we only summarize two recent works that are di-

In distributed file systems, various consistency guarantee
have been introduced. The most stringent guarasteief
consistency, assures that all clients see precisely the same
data at all times. Although semantically ideal, strict dens
tency can be detrimental to performance and availability in
for pariton. O i other endl o e spectrum, conistony €CLY Teated 1o our sudy o
guarantees.are abandoned altogether, e.g i}] P2P system Tham et.al. §tudy the workload characteristics of six sci-
that strive to maximize availability [20 ,15 .2'2] or are re- Ehtifi ap_phcgﬂons [25] whqse workloads are composed of
placed by heuristics for addressing cor;flict,s wh’en they hap_several plpel|ngs. Thg studied wor klogds demonstrate thre
pen [24, 14], i.e.optimistic replication. To balance the common behaviors: Flrgt, smallmmal mput; are usua>k|ye_
benefit 6f refalicat,ion with the cost of guaranteeing consis- panded by early stages into large intermediate resultgwhi
tent access, some distributed file systems proneed-only are often reduced by "?‘ter §tages to small resu'lts. Second,
access to réplicated files, side-stepping update consisten although USers ter!d to |Qent|fy Iargg data co!lec’gons aded
problems altogether [23, 4, 26]. by an application, in a given execution, applications ugual

oo L selects a small working set. And third, significant datashar
We observe that although optimistic replication has been g 9

widelv studied. few lications in reality are prepared t ing are observed for users often submit large numbers of
ely studied, Tew applications In realily are prepared to very similar jobs that access similar working sets.
deal with the conflicts that might happen. Even if applica-

tions can provide such support, conflict resolution must be Holtman et al. investigate the data processing reqire-
P pport, ments that CMS experiments demands and the expected
performed carefully; otherwise, the cost to reproduce,data

i iol 0 b nsiderable. The lack of consisten workload characteristics after the LHC collider starts-run
pOssIbIE, can be consideranle. € lacx of consiste Cyning [13]. Regarding to file access, they point out that the
guarantees makes it infeasible for scientific collaboretio CMS workloads will be dominated by reading, and the step-
Wh;:Ch r.(taqwre reﬁable (ejmd cfoordmated da;[ja aclcess.r i wise refinement of algorithms will lead to a workload where
h cl;r s ?upen(;r'retarl] per orl”f[]ac;ngc;a, read-on ytr?p Ilcta; 0N series of jobs are run over the same input data, with each job
8as Vs.i? avc(ere Im el.C“rtTe” " exp;$r|meg alp adorm containing the refined code or parameter. Sometimes, CMS
[8]. Wi read-only replication, once a lie 1S declared as applications need to randomly access data from data sets
shared by its creator, it cannot be modified. An immutable

file has two important broperties. |.e.. its name mav not that are too large to stage to every machine in a site. Such
P Prop N Y NOL 1se cases require accessing files on a large file system lo-

be reused and its contents may not be altered. While SIM-cal to the site. Furthermore, CMS expects to access files

flﬁ’ ;ead-onlytrepllcaltlon r;]as. sevberﬁl d.efICIenCIES. H:St through regular POSIX I/O calls without re-linking with
ails to support complex sharing behavior, e.g., conc rrenespecial libraries.

writes. Second, to guarantee uniqueness of file names, fil
crgauon and retrieval require qspemal AI_D.I, which hlndgrs 5. Conclusion
using the software developed in the traditional computing
environment for global collaborations. Supporting consistent mutable replication in large-sdae
Various middlewares have been developed with the goaltributed file systems is traditionally considered too expen
to facilitate data access on the Grictorage Resource sive to utilize. The work presented in this paper demon-
Broker (SRB) [5] utilizes metadata catalog service to al- strates that it is feasible and practical to provide such sup
low location-transparent access for heterogeneous dista se port with negligible impact on common case performance.
NeST [6], a user-level local storage software, provides best- In the paper, we describe a replicated file system designed
effort storage space guarantees, mechanisms for resource meet the needs of global collaborations. The system sup-
and data discovery, user authentication, quality of servic ports a global name space and location independent nam-
and multiple transport protocol support, with the goal to ing, which facilitates data sharing, distribution, and man
bring appliance technology to the Grid. T@&imera sys- agement. It uses a replication protocol that supports muta-
tem [10] provides a virtual data catalog that can be used byble replication with stringent yet flexible consistency gua
applications to describe a set of programs, and then trackantees. The evaluation results using a real scientific egopli
all the data files produced by executing them. The work is tion show that the presented replication system can signif-
motivated by observing that a lot of scientific data is detive icantly improve application performance by allowing them
from other data by the application of computational proce- to access data from a nearby server. Furthermore, the per-
dure, which implies the need for a flexible data sharing and formance overhead to support mutable replication and to
access system. guarantee consistency is small as long as applications use
A common missing feature among these middlewares issynchronous write at a moderate rate.

References

(1]
(2]

(3]
(4]

(5]

(6]

(7]

ATLAS. http://atlasinfo.cern.ch/Atl as/
Vel come. htmi .

LHC. http://atlasinfo.cern.ch/Atl as/
Vel come. htm .

UNIX man pages: open(23econd edition, 1997.

B. Allcock, J. Bester, J. Bresnahan, A. L. Cherve-
nak, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel,
S. Tuecke, and |. Foster. Secure, efficient data transport
and replica management for high-performance data-intensi
computing. InProc. of the Eighteenth IEEE Symposium on
Mass Storage Systems and Technolggiage 13, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC
storage resource broker. Rroc. of CASCON’981998.

J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley,
A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and M. Livny.
Flexibility, manageability, and performance in a grid sigpe
appliance. InProc. of the 11th IEEE Symposium on High
Performance Distributed Computing (HPDC-13jly 2002.

M. Carson and D. Santay. NIST Net: a Linux-based net-
work emulation tool. SIGCOMM Comput. Commun. Rev.
33(3):111-126, 2003.

[8] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Tuecke. The data grid: Towards an architecture for the dis
tributed management and analysis of large scientific detase
Journal of Network and Computer Applications

I. Foster and C. KesselmafThe Grid: Blueprint for a New
Computing InfrastructureMorgan Kaufmann, 1998.

|. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A
virtual data system for representing, querying, and automa
ing data derivation. IfProc. of the 14th Conference on Sci-
entific and Statistical Database Managemezi02.

J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Teeck
Condor-g: A computation management agent for multi-
institutional grids.Cluster Computing5(3):237-246, 2002.

A. Hisgen, A. Birrell, T. Mann, M. Schroeder, and G. Stvar
Availability and consistency trade-offs in the Echo dis-
tributed file system. IdProc. 2nd IEEE Workshop on Work-
station Operating Sysi1.989.

K. Holtman. Cms data grid system overview and require-
ments. The Compact Muon Solenoid (CMS) Experiment
Note 2001/037, CERN, Switzerland, 2001.

P. Kumar and M. Satyanarayanan. Supporting applinatio
specific resolution in an optimistically replicated file ®rs.

In Workshop on Workstation Operating Systepeges 66—
70, 1993.

B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira
and M. Williams. Replication in the Harp file system. In
Proc. of 13th ACM Symposium on Operating Systems Prin-
ciples pages 226-38, 1991.

P. Mockapetris. Domain names - concepts and facilities
STD 13, RFC 1034, November 1987.

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

P. Mockapetris. Domain names - implementation andispec
fication. RFC 1035, November 1987.

A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. tvy

A read/write peer-to-peer file system. Broc. of 5th Sym-
posium on Operating Systems Design and Implementation
2002.

B. Pawlowski, S. Shepler, C. Beame, B. Callaghan,
M. Eisler, D. Noveck, D. Robinson, and R. Thurlow. The
NFS version 4 protocol. IrProc. of the 2nd Interna-
tional System Administration and Networking Conference
(SANE200Q)page 94, 2000.

G. J. Popek, R. G. Guy, T. W. Page, Jr., and J. S. Heide-
mann. Replication in Ficus distributed file systems|HEE
Computer Society Technical Committee on Operating Sys-
tems and Application Environments Newsletterlume 4,
pages 24-29. IEEE Computer Society, 1990.

G. Project. Gridftp: Universal data transfer for thedgr
2000. white paper.

Y. Saito, C. Karamanolis, M. Karlsson, and M. Mahalinga
Taming aggressive replication in the pangaea wide-area file
system. InProc. of 5th Symposium on Operating Systems
Design and Implementatip2002.

M. Satyanarayanan, J. H. Howard, D. A. Nichols, R. N&sid
botham, A. Z. Spector, and M. J. West. The ITC distributed
file system: principles and design. Proc. of the 10th
Symposium on Operating Systems Principfeges 35-50,
1985.

M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasak
E. H. Siegel, and D. C. Steere. Coda: A highly available
file system for a distributed workstation environmetlgEE
Transactions on Computer39(4):447—459, 1990.

D. Thain, J. Bent, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and M. Livny. Pipeline and batch sharing in
grid workloads. InProc. of the 12th IEEE International
Symposium on High Performance Distributed Computing
(HPDC'03), page 152, Washington, DC, USA, 2003. IEEE
Computer Society.

B. S. White, M. Walker, M. Humphrey, and A. S. Grimshaw.
Legionfs: a secure and scalable file system supporting-cross
domain high-performance applications.Rroc. of the 2001
ACMI/IEEE conference on Supercomputingages 59-59,
New York, NY, USA, 2001. ACM Press.

J. Zhang and P. Honeyman. Consistent file replication fo
wide area collaboration. Technical Report CITI-TR-05-4,
Ann Arbor, MI, USA, July 2005.

