
Formal Methods for the Analysis of Authentication Protocols

CITI Technical Report 93-7

A. D. Rubin

P. Honeyman

Center for Information Technology Integration

Dept. of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48103-4943

November 8, 1993

Abstract

In this paper, we examine current approaches and the state of the art in the application of formal
methods to the analysis of cryptographic protocols. We use Meadows' classi�cation of analysis
techniques into four types.
The Type I approach models and veri�es a protocol using speci�cation languages and veri�cation

tools not speci�cally developed for the analysis of cryptographic protocols. In the Type II approach,
a protocol designer develops expert systems to create and examine di�erent scenarios, from which
she may draw conclusions about the security of the protocols being studied. The Type III approach
models the requirements of a protocol family using logics developed speci�cally for the analysis of
knowledge and belief. Finally, the Type IV approach develops a formal model based on the algebraic
term-rewriting properties of cryptographic systems.
The majority of research and the most interesting results are in the Type III approach, including

reasoning systems such as the BAN logic; we present these systems and compare their relative merits.
While each approach has its bene�ts, no current method is able to provide a rigorous proof that a
protocol is secure.

Formal Methods for the Analysis of Authentication Protocols

Contents

1 Introduction 2

2 Terminology 2

3 Needham and Schroeder 3
3.1 A Weakness in the Protocol : 4
3.2 Handling the Weakness : 5
3.3 Discussion : 5

4 Approaches to Analysis 5

5 Type I Approach 6
5.1 Using a Formal Veri�cation System : 7
5.2 Using LOTOS for Protocol Speci�cation : 8
5.3 Specifying a Protocol as a Finite State Machine : 9
5.4 The Use of Finite State Machines for Protocol Analysis : : : : : : : : : : : : : : : : 9

6 Type II Approach 10
6.1 The Interrogator : 11
6.2 A Rule-Based System : 12
6.3 Discussion : 12

7 Type III Approach 12
7.1 An Axiomization of Belief : 12
7.2 The BAN Logic : 13

7.2.1 The basic constructs of the BAN logic : 13
7.2.2 The rules of inference of the BAN logic : 14
7.2.3 The idealized protocol of the BAN logic : 14
7.2.4 Protocol analysis with the BAN logic : 15
7.2.5 The goals of authentication of the BAN logic : : : : : : : : : : : : : : : : : : 16
7.2.6 Nessett's criticism of the BAN logic : 16

7.3 Extensions to the BAN Logic : 17
7.3.1 The GNY logic : 17
7.3.2 The Mao and Boyd logic : 19
7.3.3 Extending BAN to deal with PKCS : 20
7.3.4 Adding probabilistic reasoning to BAN : 21

7.4 The CKT5 Logic : 21
7.5 Analysis of Belief Evolution : 22
7.6 Semantics of Logics of Authentication : 23

7.6.1 A semantics for the BAN logic : 24
7.6.2 A semantic model for authentication protocols : : : : : : : : : : : : : : : : : 25

7.7 A Nonmonotonic Logic of Belief : 26

8 Type IV Approach 27
8.1 Dolev and Yao : 27
8.2 Using the NARROWER Algorithm for Protocol Analysis : : : : : : : : : : : : : : : 27
8.3 The KPL Logic : 28
8.4 The NRL Protocol Analyzer : 28

9 Conclusions 30

1

Rubin & Honeyman

1 Introduction

Authentication is the process by which a princi-
pal in a distributed system proves its identity.
Typically, each principal shares a secret with
some trusted machine, called an authentication
server. By proving possession of this secret, a
principal can establish trust in its identity. The
use of passwords in a multi-user environment is
an example of this.

The shared secret in an authentication sys-
tem is typically used as an encryption key.
The encryption scheme has the property that a
user cannot generate or decrypt encrypted data
without possession of the key. Thus, a principal
proves it is in possession of a key by encrypting
with it.

Authentication in a large, distributed system
is challenging because principals communicate
over a network that is vulnerable to many at-
tacks. A passive intruder can eavesdrop on a
line and obtain sensitive information. Of graver
consequence, is an active intruder who can
modify message tra�c by blocking the trans-
mission of packets and inserting his own pack-
ets at will. Such an intruder can impersonate
any principal in the system and possibly inter-
cept his rights and privileges.

Encryption can thwart the attacks of an ac-
tive intruder. Encrypted data has the property
that any modi�cation to some part of the data
causes the decryption to fail. Thus, without
knowledge of the key, an active, malicious in-
truder's ability is limited to blocking data from
reaching its destination.

In authentication systems, we assume that
each principal shares a secret key with an au-
thentication server. This key is established
by some secure, o�-line method. Two princi-
pals can communicate securely by sending en-
crypted messages to the authentication server,
who can re-encrypt and forward them to the in-
tended recipient. However, issues of scale make
this impractical.

Rather, when two principals wish to commu-
nicate, they establish a secret key known only
to them. This secret key serves as a secure com-
munication channel between the two principals
because an active intruder who doesn't know
the key cannot successfully interfere with the

communication1. However, establishing such a
key, called a session key, is a nontrivial prob-
lem.
The problem of establishing secure session

keys between pairs of principals in a distributed
authentication system led to a great deal of
research. This research focuses on the devel-
opment of protocols, and is accompanied by a
greater and more interesting problem, the anal-
ysis of authentication protocols.
The Needham and Schroeder authentication

protocol [40] revolutionized security in dis-
tributed systems. Adaptations of this proto-
col, such as Kerberos [54] and the Andrew File
System [25] have become universal. However, it
was not long before a aw was found in this pro-
tocol [15]. Needham and Schroeder then pub-
lished a revised version of their protocol [41].
The existence of a subtle aw in a previ-

ously trusted protocol stressed the need for for-
mal methods for analyzing authentication pro-
tocols. In fact, many authors praise the mer-
its of their analysis techniques with their abil-
ity to discover the aw in the Needham and
Schroeder protocol [7, 10, 20, 37, 53, 63].
A few speci�cation techniques for authenti-

cation protocols have been published [35, 60,
64, 67], and several formal analysis techniques
have been proposed. In particular, the use
of predicate logic for the analysis of proto-
cols was proposed by Burrows et al.2 [7],
and many extensions have since been published
[9, 10, 18, 20, 52, 53].
Others have been critical of the BAN logic

[42, 57], and have proposed their own logics
[30, 33, 35, 36, 37, 39, 55, 57, 63, 67]. This
paper explores these logics and discusses the
tradeo�s among them.

2 Terminology

This section describes some of the terminology
used in the rest of the paper. Because many
researchers de�ne their own terms and use dif-
ferent notations, we have standardized on the

1It is assumed that systems will always be vulner-
able to message blocking because in the simple case
an intruder can cut the physical wire connecting two
machines.

2This logic is referred to as BAN logic, after the
authors Burrows, Abadi, and Needham.

2

Formal Methods for the Analysis of Authentication Protocols

following de�nitions.

Threat model refers to the assumed charac-
teristics of the security environment. It
includes the assumptions made about the
principals involved and the possible inter-
ference of malicious agents. In this pa-
per, the threat model includes an active
intruder who can delete, modify, and cre-
ate message tra�c at will. We also assume
strong encryption.

Encryption is the science or art of generat-
ing a cipher text from a clear text, making
the clear text unrecognizable. In security
systems encryption involves the use of a
secret key and a known algorithm.

Decryption is the science or art of generating
a clear text from a cipher text. In security
systems decryption involves knowledge of
a secret key and a known algorithm.

Cryptanalysis is the science or art of break-
ing a cryptographic code without knowl-
edge of the key. The methods used take
into consideration letter frequency, and
any information about the context avail-
able. This type of analysis is very ad-
vanced and can defeat all but the best en-
cryption techniques.

Strong encryption is an encryption method
that is assumed to be computationally un-
breakable. Also, it is not vulnerable to any
form of cryptanalysis.

Z is a common notation to represent the in-
truder. (It is also common to see X and
C.)

Key management protocol is used inter-
changeably with the terms authentication
protocols and cryptographic protocols. It is
a set of rules de�ning the messages passed
in an encryption system to distribute se-
cret keys.

Nonce is an identi�er, usually a large random
number, that is used only once. The main
purpose of a nonce is to link two messages
together so that a response can be recog-
nized as fresh. A nonce is usually repre-
sented as Na or Nb, etc.

Doxastic logic is based on belief. The rea-
soning system uses rules about how belief
is propagated to establish new beliefs.

Epistemic logic is based on knowledge. The
reasoning is similar to reasoning in a dox-
astic logic, but these logics are used to rea-
son about knowledge instead of belief.

fdata gk represents data encrypted under se-
cret key, k.

Session key is a secret encryption key estab-
lished between two principals for commu-
nication purposes. As the name implies,
this key is intended for one session only.
Sometimes this session is only one proto-
col run; often it lasts for the lifetime of a
ticket or token.

Symmetric keys are used for private key sys-
tems. In such systems, the same key is
used for encryption and decryption. For
example, fdata gk can be decrypted with
k.

Asymmetric (public) keys are pairs of keys
that are inverses of each other. One key
is kept private, and is known only to the
principal who possesses it. The other key
is public, and is made widely available.
Data encrypted with the private key can
be decrypted with the public key; simi-
larly, data encrypted with the public key
can be decrypted with the private key.

Symmetric protocol exists if two principals
play the same role in the protocol. Thus a
protocol in which a principal speaks with
the authentication server is not symmetric,
whereas a protocol, in which two users at
the same trust level share data usually is
symmetric.

3 Needham and Schroeder

We now turn to one of the most famous and
landmark protocols to begin our discussion of
protocol analysis.
The Needham and Schroeder protocol [40]

distributes a secret session key between two
principals in a network. The threat model of
the Needham and Schroeder protocol assumes

3

Rubin & Honeyman

S

BA

1. A,B,Na

5. {Nb-1}

4. {Nb}

Kbs

Kab

Kab

2. {Na, B, Kab,{Kab,A} }Kas

3. {Kab,A}Kbs

Figure 1: The Needham and Schroeder
Protocol

that each principal shares a secret key with an
authentication server and that an intruder can
read and modify anything that passes on the
network. In addition, the model assumes that
intruders can block any message from reaching
its destination and insert malicious messages of
their own.
The participants in this protocol are the

three principals, A, B, and S, where S is the
authentication server, and A is a principal who
wishes to initiate a secure session with prin-
cipal B. Thus, as pointed out by Sidhu [50],
this protocol is not symmetric. We represent a
protocol step as

A! B :Message

to indicate that A sends Message to B. Thus,
the Needham and Schroeder protocol can be
speci�ed as follows:

1. A! S : A;B;Na

2. S ! A : fNa; B;Kab; fKab; AgKbs
gKas

3. A! B : fKab; AgKbs

4. B ! A : fNbgKab

5. A! B : fNb � 1gKab

This protocol is represented graphically in Fig-
ure 1. Each node represents a principal, and
the transitions represent the messages being
sent. The transitions are numbered in the or-
der of the messages. Kab represents the secret
key shared by A and B, etc.

In message 1, A sends a request to the server
(S) indicating that it wishes to communicate
with B. The nonce Na is included to link fu-
ture messages to this request. This message is
sent in the clear because it includes no security
related information.
In message 2, the server S responds with a

session key, Kab. A copy of the key is also en-
crypted under B's secret key. In addition, Na

is included as a guarantee that this message is
not a replay of a previous response. Each prin-
cipal is also told which principal will be on the
other end of the secure channel. This can be
seen by the inclusion of A in fKab; AgKbs

.
In message 3, A forwards fKab; AgKbs

to B,
who can decrypt it and recover Kab. B then
issues message 4 as a challenge to A to make
sure that A possesses Kab. In message 5, A
proves possession of the session key. At the
end of the protocol, it would seem that A and
B would be in possession of Kab,

3 and that no
intruder could possibly know the secret session
key. Thus, this protocol appears to allowA and
B to establish a secure channel.

3.1 A Weakness in the Protocol

Denning and Sacco [15] were the �rst to dis-
cover a major weakness in the Needham and
Schroeder protocol.
It is assumed that a session key is meant to

be used only once and then discarded. Now, if
we assume an intruder, Z, has recorded a pre-
vious run of the Needham and Schroeder proto-
col, then an attack is possible if the old session
key is compromised.
To illustrate, suppose that an old session key,

CK, has been compromised. If Z recorded the
protocol run where CK was established, then
Z can replay the message:

Z ! B : fCK;AgKbs

Thinking A has initiated a new conversation,
B requests a handshake from A:

B ! A : fNbgCK

Z intercepts the message, decrypts it with CK,
and impersonates A's response:

3We ignore the fact that S also has Kab because it
is assumed to be a trusted server that would not abuse
the key.

4

Formal Methods for the Analysis of Authentication Protocols

Z ! B : fNb � 1gCK

Thereafter, Z can send bogus messages to B
that appear to be from A. B will have no way
of knowing that it is not communicating with
A.

3.2 Handling the Weakness

Denning and Sacco suggest that by adding
timestamps to messages 2 and 3, the problem
can be solved. Thus, these two steps become:

S ! A : fT;Na; B;Kab; fKab; A; TgKbs
gKas

A! B : fKab; A; TgKbs

where T is a timestamp. Thus, a replay of mes-
sage 3 would be recognized as old and would be
ignored.

In a follow-up paper Needham and Schroeder
propose a solution that is based on the use
of nonces[41]. They observe that one of the
communicating parties will require proof of the
timeliness of a future message. It is always this
party that should generate the nonce identi�er.

This is achieved as follows. Before the pro-
tocol takes place,

A! B : A

B ! A : fA; JgKbs
, where J is a nonce iden-

ti�er that will be kept by B.

Now, J can be included in the authenticator
sent to A to be forwarded to B. Thus, B will
be assured that the session key is fresh and not
a replay.

The vulnerability of the Needham and
Schroeder protocols comes from the fact that
each session key is meant for exactly one ses-
sion. If an intruder can compromise an old ses-
sion key, he can force its use in another session.
Both Denning and Sacco's solution and the re-
vised Needham and Schroeder protocols solve
this problem by requiring that the forwarded
message from A to B establish a new session.

This section deals with symmetric secret
keys. The arguments are similar for public key
systems, and we do not repeat them here.

3.3 Discussion

We have shown how a weakness discovered in a
published protocol can be �xed, but we have
not proved that the resulting protocol is se-
cure. Furthermore, we have not shown that a
mechanical technique could discover this weak-
ness. In the remainder of this paper we will
discuss how formal methods have been applied
to the analysis of authentication protocols.

4 Approaches to Analysis

Meadows [36] de�nes four approaches that have
been taken in the analysis of cryptographic pro-
tocols:

Type I{ To model and verify the protocol us-
ing speci�cation languages and veri�ca-
tion tools not speci�cally developed for the
analysis of cryptographic protocols.

Type II{ To develop expert systems that a
protocol designer can use to develop and
investigate di�erent scenarios.

Type III{ To model the requirements of a
protocol family using logics developed for
the analysis of knowledge and belief.

Type IV{ To develop a formal model based
on the algebraic term-rewriting properties
of cryptographic systems.

The Type I approach is the least popular, while
the Type III approach is the most common.
These approaches share a few properties. In all
cases, the methods are independent of the un-
derlying cryptographic mechanisms.4 In addi-
tion, we typically assume a set of principals and
a trusted authentication server. The principals
are not trusted, and may consist of a privileged
intruder who can add, delete, or modify mes-
sages on the network at will.
The next four sections describe each of the

four types of authentication protocol analysis.
Table 1 shows the focus of current research.
The entries in the table refer to the bibliog-
raphy reference numbers.

4For a good discussion of failures in a cryptosys-
tem due to the underlying encryption mechanisms see
Moore [38].

5

Rubin & Honeyman

Protocol Protocol Analysis
First Author Speci�cation Type I Type II Type III Type IV
Abadi [1]
Bieber [2]
Blumer [3] [3]
Britton [4]
Burrows [7] [8]
Calvelli [9]
Campbell [10]
Dolev [16]
Gaarder [18]
Gong [19] [20]
Gray [26]
Kailar [27]
Kasami [28]
Kemmerer [29] [29] [29]
Longley [30]
Lu [31]
Mao [32]
Meadows [35] [35] [33] [34] [35] [36]
Millen [37]
Moser [39]
Nessett [42]
Rangan [44]
Sidhu [50]
Snekkenes [51] [52] [53]
Syverson [60] [60] [56] [57] [58] [59] [61] [55] [60]
Varadharajan [62] [63] [64] [62] [63] [64]
Woo [67] [67]

Table 1: The Focus of Research in the Speci�cation and Analysis of Authentication Protocols by
Category. Entries in the table correspond to bibliography reference numbers. The four types under
protocol analysis are as described by Meadows [36].

5 Type I Approach

The Type I approach to the analysis of cryp-
tographic protocols is to model and verify pro-
tocols using speci�cation languages and veri�-
cation tools not speci�cally developed for the
analysis of such protocols. The main idea is
to treat a cryptographic protocol as any other
program and attempt to prove its correctness.
A criticism of this approach is that it proves
correctness and not necessarily security [50].

The �rst step in this approach is to specify
the cryptographic protocol in a way that the
techniques being used can be applied. Sidhu

[50] suggests a speci�cation technique that in-
volves representing a protocol as a directed
graph. Varadharajan [63] also adopts this
method. However, in a more recent publication
[64], he uses LOTOS (Language of Temporal
Ordering Speci�cation) for specifying authen-
tication protocols.

The work by Kemmerer [29] �ts into several
of the types of approaches, as shown in Ta-
ble 1. The author describes an example sys-
tem with a special cryptographic facility. The
Type I approach can be seen in his attempt to
use machine-aided veri�cation techniques. The
properties that the protocol should preserve are

6

Formal Methods for the Analysis of Authentication Protocols

expressed as state invariants, and the theorems
that must be proved to guarantee that the cryp-
tographic facility satis�es the invariants are au-
tomatically generated by the veri�cation sys-
tem.
It should be noted that although much ef-

fort was concentrated on the Type I approach
early on, most work in this area has been redi-
rected as the logics of the Type III approach
have gained popularity.

5.1 Using a Formal Veri�cation
System

Kemmerer [29] describes two goals in using for-
mal methods for the analysis of encryption pro-
tocols. The �rst is to verify formally that an en-
cryption protocol satis�es its stated security re-
quirements, and the second is to discover weak-
nesses in its speci�cation. His formal model
uses a state machine approach where a system
is viewed as being in various states, which are
di�erentiated from one another by the values of
state variables. The values of the variables can
be changed only via well-de�ned state transi-
tions.
Kemmerer uses an extension of �rst-order

predicate calculus, a formal speci�cation lan-
guage called Ina Jo [48]. This nonprocedural
assertion language was not developed speci�-
cally for use with security protocols, and thus
this work �ts into the Type I analysis approach.
Ina Jo uses the following symbols for logical

operations:

& logical AND

! logical implication

In addition, there is a conditional form,

(if A then B else C)

where A is a predicate and B and C are well-
formed terms. The notation for set operations
is:

2 is a member of

[set union

fa,b,...,cg set consisting of elements
a,b,...,and c

fset descriptiong set described by set de-
scription

The language also contains the following quan-
ti�er notation:

8 for all

9 there exists

There are also two special Ina Jo symbols:

N 00 to indicate the new value of a variable (e.g.,
N 00v1 is the new value of variable v1)

T 00 which de�nes a subtype of a given type, T

Kemmerer [29] describes an example system,
and then gives an Ina Jo speci�cation of the
system. In this system, n terminals are con-
nected to a central host. Each terminal con-
tains a cryptographic facility that holds a per-
manent terminal key. The host stores two ta-
bles of keys. The �rst table is a list of the
session keys being used in the system, and the
second table contains the terminal keys. As
such, the host acts as an authentication server.
In this system, the host is connected to a

tamper-proof cryptographic facility that holds
master keys for decrypting the information in
the two tables. This system is used for peda-
gogical purposes and has not actually been im-
plemented. The system architecture is shown
in Figure 25. Ina Jo constants and variables are
described, along with transforms. An example
of a constant in this example system is:

Terminal key(Terminal num):Key

because each terminal has a constant terminal
key. However, as session keys vary from session
to session, an example variable in Ina Jo is:

Session Key(Terminal num):Key

An example of a transform in Ina Jo is Gen-
erate Session Key. These are used to change
state in the analysis.
An Ina Jo axiom is an expression of a prop-

erty that is assumed. For example, to express
that encryption and decryption are commuta-
tive, we would use the following Ina Jo axiom:

5This �gure is based on the �gure by Kemmerer [29].

7

Rubin & Honeyman

Host

Cryptographic

Facility

Session

Key Table Key Table

Terminal

Terminal 1

Terminal 2

Terminal n

Terminal 3...

Key 0

Key 1HOST

Terminal

Cryptographic

Terminal Key K(n)

Facility Containing

Figure 2: System Architecture for Kem-
merer's Sample System.

AXIOM 8t:TEXT,
k1; k2:Key (Encrypt(k1, Decrypt(k2; t)) =
Decrypt(k2,Encrypt(k1; t))).

Other such axioms are given in the full speci-
�cation found in the appendix of Kemmerer's
paper [29].
Finally, Ina Jo criteria clauses are used to

specify the critical requirements that the sys-
tem is to satisfy in all states. For example, the
criterion that no key available to the intruder
can be used for encryption can be speci�ed as:

CRITERION 8k:Key (k 2 Intruder Info !
k =2 Keys Used).

Once the speci�cation is complete, Ina Jo
generates theorems that can be used to verify
if the critical requirements (criterion) are satis-
�ed. Kemmerer points out that \an advantage
of expressing the system using formal notation
and attempting to prove properties about the
speci�cation is that, if the generated theorems
cannot be proved, the failed proofs often point

to weaknesses in the system or to an incom-
pleteness in the speci�cation."
Kemmerer uncovers a weakness in his sam-

ple system using the formal speci�cation. How-
ever, the value of this method is limited because
proving the criterion of an Ina Jo speci�cation
does not necessarily guarantee that a protocol
is secure. In addition, to specify requirements
that secure a system from active attacks, the
designer �rst needs to know the potential at-
tacks, obviating any need for formal methods
to discover them.

5.2 Using LOTOS for Protocol

Speci�cation

Varadharajan [64] proposes the use of LOTOS
to analyze authentication protocols. He gives
as examples the speci�cation of two proto-
cols that have been adopted as standards: the
ISO/DP 9798 and CCITT X.509. However, no
results are given. The paper concludes by stat-
ing that LOTOS tools are not yet adequate and
are currently being developed.
The paper gives a very strong recommenda-

tion for the use of LOTOS. The goals of such a
Formal Description Technique (FDT) are out-
lined as follows:

expressive power: ability to express a wide
range of properties required for the de-
scription of services and protocols.

well-de�ned: syntax and semantics enabling
mechanical manipulation, and validation.

well-structured: increasing understandabil-
ity and maintainability of speci�cations.

abstraction: allowing representation of archi-
tectural aspects at a su�ciently high level
of abstraction, where implementation de-
tails are not speci�ed.

LOTOS has been developed for systems re-
lated to the Open Systems Interconnection
(OSI), and is based on a process algebra that
does not use a temporal logic, despite what the
name might imply.
A system in LOTOS is modeled as a collec-

tion of processes in which the order of events
is speci�ed. As such, it can be used to model

8

Formal Methods for the Analysis of Authentication Protocols

the messages sent in an authentication proto-
col. However, to date no concrete results have
been reported using this method.
Methods of Type I will have to demonstrate

some success before they become popular. The
next section describes another attempt to use
tools not originally intended to analyze authen-
tication protocols.

5.3 Specifying a Protocol as a Fi-
nite State Machine

Sidhu [50] and Varadharajan [63] describe how
to specify a protocol using state diagrams. A
directed graph is used for each principal. First,
an initial state is speci�ed. Then, an arc is
drawn to another state for each message that
can be sent or received at that point. We will
demonstrate this with an example.
The Needham and Schroeder [40] protocol is

reproduced below for reference.

1. A! S : A;B;Na

2. S ! A : fNa; B;Kab; fKab; AgKbs
gKas

3. A! B : fKab; AgKbs

4. B ! A : fNbgKab

5. A! B : fNb � 1gKab

We use the following notation:

P�1 event { principal P transmits message 1

P+1 event { principal P receives message 1

Varadharajan [63] gives a state diagram for
each entity, A, B, and S. The attempt is to
capture the behavior of each principal in the
protocol. However, his example is highly com-
plex and counterintuitive. We prefer to repre-
sent the protocol as a cross product of the state
diagrams for each individual principal (Figure
3). The nondeterministic �nite state machine
is constructed from the individual machines for
A and B. The individual machine for a prin-
cipal is composed of a sequence of states with
arcs representing the transmission or reception
of a message. A state is labeled P�n to indi-
cate that principal, P has transmitted message
number n and P+n if P receives message n.
If the �nal accepting state is reached, then

we have a legal run of the protocol initiated by

either A or B. If an individual principal's ma-
chine consists of x states, then the cross prod-
uct machine with another principal in the pro-
tocol has x2 + 1 states including the �nal ac-
cepting states. All other states represent illegal
runs of the protocol.
As we describe each state in our protocol

speci�cation, notice that it is assumed that A
and B play the same role in the protocol. This
assumption is controversial. Varadharajan [63]
states that \A and B have symmetric roles."
However, Sidhu [50] states that \The authen-
tication protocols of Needham and Schroeder
are not symmetric between a sender and a re-
ceiver and assume a particular time ordering of
events."
The state representations presented by Sidhu

di�er slightly from those of Varadharajan. Re-
maining impartial, we present our own state
diagram construction, and refer the curious
reader to Sidhu's and Varadharajan's papers
[50, 63] for their representations.
The next section discusses how these �nite

state machines that are used to specify proto-
cols can also be used in their analysis.

5.4 The Use of Finite State Ma-
chines for Protocol Analysis

The state machines described above can be
used to analyze authentication protocols by
employing a technique known as the reachabil-
ity analysis technique [66].
To use this technique, for each transition, the

global state of the system is expressed using
the states of the entities and the states of the
communication channels between them. Each
global state is then analyzed and properties are
determined, such as deadlock and correctness.
If an entity is not able to receive a message that
it is supposed to receive in a given state, then
there is a problem with the protocol. For an
example of such an analysis, see Varadharajan
[63].
Reachability analysis techniques are e�ective

in determining whether or not a protocol is cor-
rect with respect to its speci�cations, the pur-
pose for which they were invented. However,
they do not guarantee security from an active
intruder. The weakness of Type I analysis tech-
niques is that in applying methods that were

9

Rubin & Honeyman

...

...
A -1

A -1

A -1

-1B

-1B

-1B

1 <= i <= x

S 2i

1 <= j <= x

S j2

A+2 .. .
.. .

+5B

+5A

10

11

00S

S

S

S

S

S

S

1x

01

11

x1

+1

+1

accept

accept

-2 +2BSS

S -2S
1 <= i <= x

S

1 <= j <= x

S

3i

j3

Figure 3: Nondeterministic Finite State Machine for Principals A and B Intiating the
Needham and Schroeder Protocol. The arc P�n means that principal P transmits message
number n. P+n means that P receives message n. This machine is constructed by taking the cross
product of the individual machines for A and B initiating the portocol. If a state of A's machine
is Si, and B's is labeled Sj , then the corresponding state in the cross product machine is Sij . The
number of legal states in each of A's and B's machines is x, and the cross product contains x2 + 1
legal states including the accepting �nal state. All other states are illegal, and stand for illegal runs
of the protocol.

not intended speci�cally for security analysis,
subtle pitfalls that are peculiar to the security
domain, such as the e�ect of message replay,
are not considered.

6 Type II Approach

The Type II approach to the analysis of crypto-
graphic protocols is to develop expert systems
that a protocol designer can use to develop and
investigate di�erent scenarios. These systems
begin with an undesirable state and attempt
to discover if this state is reachable from an
initial state.
Although this approach may better identify

aws than Type I approaches, it does not guar-
antee the security of an authentication proto-
col, nor does it provide an automated technique
for developing attacks on a protocol. In other

words, the Type II approaches can discover
whether a given protocol contains a given aw,
but are unlikely to discover unknown types of
aws in protocols.

Longley and Rigby [30] summarize the value
of expert systems in the analysis of key man-
agement schemes. The expert systems provide:

� a new perspective on an authentication
system;

� a technique of building models capable of
continuous re�nement;

� a method of interaction with the model,
which provides a greater insight into the
operation of the system;

� a model that responds to what if questions;
and

10

Formal Methods for the Analysis of Authentication Protocols

� a method of testing the e�ects of proposed
system modi�cations.

Thus, expert systems can be used in con-
junction with other analysis techniques such as
those of Type III and IV for the purposes men-
tioned above, but they will never replace those
techniques.
The NRL protocol analyzer [60] might be

viewed as a Type II approach. However, be-
cause it is based on the Dolev and Yao model
[16], in which an intruder produces words in
a term-rewriting system, we will consider it a
Type IV approach.

6.1 The Interrogator

The Interrogator, by Millen et al. [37] is a
noteworthy e�ort to apply expert systems to
the analysis of security protocols. The input
to the system is a protocol speci�cation and
a target data item. The output is a message
history showing how the penetrator could have
obtained this data item.
In the Interrogator, a protocol is viewed as

a collection of communicating processes, one
for each principal. Each process has a set of
possible states, and the transmission of a mes-
sage can cause a state transition in a process.
Each process maintains its own state, and when
applicable, sends messages to other processes
causing them to change state. The system is
based on the �nite state machine approach [24].
The Interrogator generates a large number of

paths through a protocol, ending in a speci�ed
insecure state. If any of these paths start with
an initial state, then a vulnerability has been
discovered. Thus, an important issue in using
the Interrogator is the speci�cation of the �nal
state.
In the Interrogator, the penetrator is ex-

pressed as a relation:

p knows(x;H; q)

where x is the data item learned by the pen-
etrator, H is the message history that lead to
this discovery, and q is a state of the network
reachable from the initial state. The meaning
of p knows is as follows:

p knows(x;H; q) i�

x is known initially

or (H = H0sent(m) and sent(m) : q0 ! q and
H0 : q0 ! q0 and p gets(x;m;H0; q0))

or (H = H0e and e : q0 ! q and
p knows(x;H0; q0))

or (H : q0 ! q0 and p modifies(q0; q;H) and
p knows(x;H; q0))

Similarly, p gets is de�ned as follows:

p gets(x;m;H; q) i�

x is a �eld of m

or (fm0gk is a �eld of m and p knows(k;H; q)
and p gets(x;m0;H; q))

The de�nition of p knows describes the three
ways a penetrator may learn x with message
history, H, in state q. The penetrator may
learn it from the last message read; may have
already known it in the previous network state,
q0; or may learn it using p modifies described
below.
The de�nition of p gets states that a pene-

trator can read any message, but if some part
of the message is encrypted, then it can only
be extracted if the key encrypting that �eld
is known. The statement p modifies(q0; q;H),
describes how a penetrator who modi�es the
network bu�er can learn x. Millen et al. state
that

\p modifies(q0; q;H) is characterized
by saying that ifm is a new message in
the network bu�er of the new state q,
the penetrator knows each �eld of m
in the prior state q0 reached by history
H." [37]

This means that if the penetrator knows x in
state q0, reachable with message history H, and
the penetrator changes the message bu�er such
that state q is reached instead with message
history H, the penetrator still knows x.
Millen et al. claim that the Interrogator was

able to rediscover the aw in the Needham and
Schroeder protocol. However, the Interrogator
was �rst provided with information to the ef-
fect that the penetrator knows an old connec-
tion key. This information could be supplied
because the programmers of the Interrogator

11

Rubin & Honeyman

were familiar with the weakness in the Need-
ham and Schroeder protocol.
Systems such as the Interrogator can be use-

ful for providing message histories for known
attacks, but it remains to be seen whether such
methods will discover new attacks on protocols
previously believed to be secure. No such result
has been reported.

6.2 A Rule-Based System

Longley and Rigby [30] describe a rule-based
system used to test the vulnerability of a key
management scheme to speci�ed attacks. The
results of applying this system to the IBM key
management scheme described by Davies and
Price [14] were consistent with the known char-
acteristics of that scheme.
The expert system uses an exhaustive search

to determine if a given attack is successful.
When the system halts, then the history of rule
�rings can give an attack strategy. Until then,
nothing can be said about the given attack. In
fact, in some cases, the search space is in�nite
and the system does not even halt.
Longley et al. use a rule-based system, OPS5

[5]. This system uses rules to transform goals
into sub-goals, and this process is continu-
ally re�ned until a concrete attack strategy is
reached.
At best, this system can be used as a model

of threat analysis. It does not perform the func-
tion of analysis in terms of demonstrating the
security of an authentication protocol. Rather,
it can sometimes determine how a given attack
might be successful against a protocol.

6.3 Discussion

The Type II approaches to protocol analysis
serve a limited function. They are most useful
for analyzing known weaknesses in protocols,
and generating message lists to exploit those
weaknesses.
The systems developed under this approach

are usually ine�cient, often resorting to ex-
haustive search. In addition, the results are
often inconclusive, and the systems may not
even halt.
Their limitations are due to the lack of ex-

pressiveness of the types of rules found in ex-

pert systems. For this reason, the majority of
research into the analysis of authentication pro-
tocols falls into the Type III category, discussed
next.

7 Type III Approach

The Type III approach to protocol analysis uses
formal logic models developed for the analysis
of knowledge and belief. Burrows et al.'s land-
mark BAN logic [7] initiated intense research
using this approach. Since then, BAN has been
extended [9, 10, 18, 20, 32, 52], and criticized
[32, 42, 52, 57].
This section discusses other contributions to

the Type III approach including the logic of
Bieber [2] and its extension by Snekkenes [53];
the axiomization of trust and belief by Ran-
gan [44]; the logic of Syverson [55]; the logic of
Kailar et al. [27]; and the logic of Moser [39].
In addition to these logics, some work has

concentrated on the semantics of logics for au-
thentication protocols [1, 61]. We discuss the
semantics introduced here and why it is im-
portant to de�ne the semantics of a logic with
great care.
In the following sections we present these log-

ics, discuss, compare, and evaluate their rela-
tive merits.

7.1 An Axiomization of Belief

Much of the work in the Type III approach is
based on a formal axiomization of belief and
trust. Shoham and Moses [49] describe the re-
lationship between knowledge and belief, and
note a close connection between belief and non-
monotonic reasoning.
Syverson [61] shows that belief and knowl-

edge are equally adequate for protocol analysis
on the logical level. Logics based on knowledge
are termed epistemic, while doxastic logics refer
to those based on belief. The main di�erence in
reasoning with these two logics is that all epis-
temic logics have an axiom that states that if a
principal knows X, then X. No doxastic logics
have such an axiom. However, Syverson shows
that this axiom (termed axiom T) can easily
be captured in doxastic logics.
Rangan [44] provides an axiom schema for

belief that is frequently referenced in the lit-

12

Formal Methods for the Analysis of Authentication Protocols

erature. In his notation, the term Bip means
that principal i believes p. The schema is as
follows.

for all i; i = 1; :::;m :

A1 All substitution instances of propositional
tautologies.

A2 Bip ^Bi(p) q)) Biq.

A3 Bip) BiBip (introspection of positive be-
lief).

A4 :Bip) Bi:Bip (introspection of negative
belief).

A5 :Bi(false) (process i does not believe a
contradiction).

The following are the inference rules.

for all i; i = 1; :::;m :

R1 From p and p) q infer q (modus ponens).

R2 From p infer Bip (generalization).

In his paper [44], Rangan de�nes the transitiv-
ity, Euclidian, and serial properties, and shows
that A3 corresponds to transitivity, given R2,
A4 corresponds to the euclidian property, and
A5 corresponds to the serial property.
These de�nitions of knowledge and belief are

the foundation for the Type III approaches dis-
cussed below.

7.2 The BAN Logic

The BAN logic casts authentication protocols
in formal terms to reason about the state of be-
lief among principals in a system. The authors'
goals were to be able to answer the following
questions about a protocol:

� What does this protocol achieve?

� Does this protocol need more assumptions
than another one?

� Does this protocol take any unnecessary
steps, ones that could be left out without
weakening it?

� Does this protocol encrypt a message that
could be sent in the clear without weaken-
ing security?

The authors state that such issues as errors
introduced by concrete implementations of a
protocol, such as deadlocks, or inappropriate
use of a cryptosystem (as described by Voy-
dock and Kent [65]) are not considered; this
system deals with authentication protocols on
an abstract level only.

7.2.1 The basic constructs of the BAN
logic

The only propositional connective is conjunc-
tion, which is denoted with a comma. Associa-
tivity and commutativity properties are taken
for granted.

P believes X The principal, P, acts as though
X is true.

P sees X Someone has sent a message con-
taining X to P, who can read and repeat
X (possibly after doing some decryption).

P said X At some time, the principal P sent
a message that includes the statement X.
It is not known how long ago the message
was sent, or even if it was sent during the
current run of the protocol. It is known
that P believed X when he said it.

P controls X The principal P is an author-
ity on X and should be trusted on this
matter. This construct is used primarily
when a principal has delegated authority
over some statement.

#(X) The formula X is fresh. That is, X has
not been sent in a message at any time be-
fore the current run of the protocol. This
is de�ned to be true for nonces, that is,
expressions generated for the purpose of
being fresh.

P
K
$Q P and Q may use the shared key K to

communicate. The key K is good, in that
it will never be discovered by any principal
except P or Q, or a principal trusted by
either P or Q.

K
7! P P has K as a public key. The matching

secret key, K�1, will never be discovered
by any principal other than P or a princi-
pal trusted by P.

13

Rubin & Honeyman

P
X
*)Q The formula X is a secret known only

to P and Q, and those principals to whom
they reaveal it. P and Q may use X to
prove their identities to one another.

fXgK from P This represents the formula X
encrypted under the key K by principal P.
The from P part is often omitted, and it
is assumed that each principal is able to
recognize and ignore his own messages.

Logical postulates are formed from these ba-
sic constructs. A security protocol is idealized,
according to rules de�ned by the authors, in
terms of these postulates. Every protocol must
be idealized before using the BAN logic; many
examples follow.

7.2.2 The rules of inference of the BAN
logic

Burrows et al. [7] provide rules of inference
for reasoning about the belief in a protocol.
These rules are applied to the initial assump-
tions to drive a proof or to answer questions
about a protocol. One important rule, the mes-
sage meaning rule, states how to derive belief
from the origin of a message.

P believes Q
K
$ P, P sees fXgK

P believes Q said X

Remember that fXgK in this context stands
for fXgK from R 6= P. Then this formula can
be intuitively explained as:

IF P believes that Q and P share a se-
cret key, K, and P sees X, encrypted
under K, and P did not encrypt X un-
der K, THEN P believes that Q once
said X.

A similar postulate exists for public keys and
shared secrets. Another important rule of infer-
ence for the BAN logic is the nonce-veri�cation
rule.

P believes #(X); P believes Q said X

P believes Q believes X

For the sake of simplicity, the authors of BAN
state that X must be clear text, that is, it
should not include any subformula of the form
fY gK . An intuitive explanation of this rule is:

IF P believes that X could have been
uttered only recently and that Q once
said X, THEN P believes that Q be-
lieves X.

This rule is important because many proto-
cols rely on the use of nonces to avoid successful
replay attacks. In fact, this is the only postu-
late that promotes from said to believes, and
thus reects in an abstract way, the practice
of using challenges and responses for authenti-
cation. A result of applying this rule demon-
strates that challenges often need not be en-
crypted, but responses must be.
The next rule, the jurisdiction rule, is often

used for delegation.

P believes Q controls X, P believes Q believes X

P believes X

This rule states:

IF P believes that Q has jurisdiction
over X, and P believes that Q believes
X, THEN P believes X.

Burrows et al. [7] provide many other infer-
ence rules that can be used to combine beliefs.

7.2.3 The idealized protocol of the
BAN logic

For a protocol to be analyzed using the BAN
logic, it must �rst be converted to an idealized
form. Typically, a step in a protocol is written
as:

P ! Q : message

This means that P sends the message and that
the principal Q receives it. This framework is
often ambiguous, and does not lend itself to
formal analysis. For example, when something
is encrypted under a session key, it may not
always be clear what parts of the message are
fresh, or who exactly knows this key. There-
fore, each step in a protocol is transformed into
an idealized form. A message in the idealized
protocol is a formula. Say we de�ne the proto-
col step:

A! B : fA;KabgKbs

In this step, A tells B, who knows the key, Kbs,
that Kab is a key to communicate with A. It is

14

Formal Methods for the Analysis of Authentication Protocols

clear that A did not generate this message, be-
cause A does not know Kbs. In fact, the mes-
sage must have come from the server S. This
step is idealized as:

A! B : fA
Kab$ BgKbs

When this message is sent to B, we can deduce
that the formula

B sees fA
Kab$ BgKbs

holds, indicating that the receiving principal
becomes aware of the message and can act upon
it.
In the idealized form, parts of the mes-

sage that do not contribute to the beliefs of
the recipient are omitted. Thus, clear text
parts of the message are not included, because
they can be intercepted and read or forged by
anyone. Idealized messages are of the form
fX1gK1

,...,fXngKn
, where each encrypted part

is treated separately.
The authors of BAN logic \view the ideal-

ized protocols as clearer and more complete
speci�cations than the traditional descriptions
found in the literature, which we view merely
as implementation-dependent encodings of the
protocols" [7]. However, no clear transforma-
tion method is presented. The paper gives nu-
merous examples of the transformation to an
idealized protocol; after careful study, idealiz-
ing protocols becomes intuitive. However, Woo
and Lam [67] criticize the idealization of proto-
cols. \We �nd idealization undesirable because
of the potentially large semantic gap that exists
between the original protocol and the idealized
version."
Nessett's criticism [42] raises similar con-

cerns, as we shall see.

7.2.4 Protocol analysis with the BAN
logic

The steps in protocol analysis with BAN logic
as presented by its authors are:

1. The idealized protocol is derived from the
original one.

2. Assumptions about the initial state are
written.

Proceed
Cannot

Idealized Protocol

Formulas attached

to protocol steps

Apply Rule

Protocol Specification Initial Assumptions

Conclusion Reached

Figure 4: Protocol Analysis with the BAN
Logic: The input to BAN is a protocol speci�ca-

tion and the initial assumptions. At each step, for-

mulas are attached to the protocol messages, and

either a rule is applied, or the logic must halt. If

possible, the desired conclusion is reached.

3. Logical formulas are attached to the state-
ments of the protocol, as assertions about
the state of the system after each state-
ment.

4. The logical postulates are applied to the
assumptions and the assertions to discover
the beliefs held by the parties in the pro-
tocol.

More precisely, a protocol in the BAN logic
is an ordered series of \send" statements,
S1,...,Sn, each of the form P ! Q : X with
P 6= Q. An annotation for a protocol consists
of a sequence of assertions inserted before the
�rst statement and after each statement. The
assertions are made by combining formulas of
the forms P believes X and P sees X. The �rst
assertion contains the assumptions, while the
last assertion contains the conclusions. These
are similar to simple formulas in Hoare logic
[23]. They are written in the form:

[assumptions]
S1 [assertion 1] S2 : : : [assertion n� 1] Sn

[conclusions]

Protocol analysis with the BAN logic is sum-
marized in Figure 4. The protocols use no no-
tion of time. Instead, time is divided into past
and present depending on whether something

15

Rubin & Honeyman

was said in a previous or current run of the
protocol.
The authors of BAN state that \More ambi-

tious proofs may require �ner temporal distinc-
tions, reected by constructs to reason about
additional epochs, or even general-purpose
temporal operators (see, for example, Halpern
& Vardi 1986 [21])." In a recent paper, Syver-
son [58] introduces temporal axioms to the
BAN logic and exposes protocol aws using this
extended logic.

7.2.5 The goals of authentication of the
BAN logic

There is some debate as to what the goals of
authentication are. Some argue that authenti-
cation is complete between A and B if there is
a K such that:

A believes A
K
$ B

B believes A
K
$ B

Others believe that an authentication protocol
should achieve:

A believes B believes A
K
$ B

B believes A believes A
K
$ B

The �rst set of goals is referred to as �rst-level
belief, whereas the second set is termed second-
level belief. According to Syverson [57], the
level of belief needed varies for di�erent ap-
plications and should be speci�ed along with
the protocol; the goals of BAN logic have often
been misinterpreted.
Cheng and Gligor [12] claim the following

conditions for the BAN logic must be satis�ed
at the end of a protocol run:

1. Both A and B believe Kab is a secret key
shared exclusively between A and B.

2. Both A and B believe that the other has
the �rst-level belief. This is the second-
level belief. If a party holds a second-level
belief, then it believes that a secure chan-
nel has been established.

3. The causal relation between the �rst-level
and second-level belief holds. That is
the �rst level-belief must be established at
some time before the second-level belief.

4. Kab should be distributed exclusively to A
and B; thus no parties other than A and
B should have beliefs about Kab ([12], p.
222).

Syverson [57] claims that these goals contradict
the original goals set out by Burrows et al. In
particular, using BAN logic, any principal who
A and B trust can also be delegated the key,
Kab. Also, as Syverson points out, a second-
level belief is not mandated by Burrows et al.,
as Cheng and Gligor claim.

7.2.6 Nessett's criticism of the BAN
logic

The BAN logic has been successful in �nding
aws in some well known protocols, such as the
Needham-Schroeder protocol, the Andrew se-
cure RPC handshake, and the CCITT X.509
protocol. In addition, BAN has uncovered re-
dundancy in the Needham-Schroeder conven-
tional key protocol, the Otway-Rees protocol,
Kerberos, the Yahalom protocol, the Andrew
RPC handshake, and the CCITT X.509 proto-
col. As such, BAN logic can be called a success.
However, there are some problems with BAN

logic. One problem is pointed out by Nessett
[42], who demonstrates what he claims to be
the hazards of devising systems of logic. He
states that \a simple example shows that the
BAN logic is capable of deducing characteris-
tics about security protocols that by inspection
are obviously false."
In Nessett's example, two principals, A and

B communicate using public keys. The proto-
col is:

A! B : fNa;KabgKa
�1

B ! A : fNbgKab

The idealized form presented by Nessett is:

A! B : fNa; A
Kab$ BgKa

�1

B ! A : fA
Kab$ BgKab

A sends B a message, containing Kab, the se-
cret key between A and B, encrypted under A's
private key. Thus, as the corresponding public
key is well known, the key Kab is no longer a
secret. In the example, B then responds with a

16

Formal Methods for the Analysis of Authentication Protocols

nonce identi�er Nb, encrypted under the shared
key, Kab. According to the BAN model, this
nonce is fresh and secret. However, as Nessett
points out, it is obvious that Na is readable and
forgeable by anyone.
The problemwith the BAN logic is that there

is no way to represent what a principal does
not know. All of the constructs and postulates
deal with what a principal does believe, but
there is no way to represent that a principal
cannot know something. As Nessett states [42]
\The essence of this aw rests in the inability of
the logic to analyze security protocols to assure
that private information remains private."
Burrows et al. [8] defend their logic. They

claim that the main di�culty in BAN logic
as pointed out by Nessett is the assumption
that A believes Kab is a good shared key for A
and B. \This assumption is clearly inconsistent
with the message exchange, where A publishes
Kab. The inconsistency is not manifested by
our formalism, but is not beyond the wit of
man to notice."
Syverson [57] states that the confusion arises

because \the BAN logic deals only with trust
and not with security." Thus, he claims that
Nessett's criticism is not valid because BAN
does not claim to provide security, but rather,
trust.
On the other hand, Snekkenes [52] attributes

the Nessett aw to the BAN logic being re-
stricted to partial correctness. He de�nes a
class of protocols called terminating, and shows
that the Nessett protocol is a non-terminating
one. \A statement or protocol step S termi-
nates after �nite time only if FALSE is not a
derivable assertion succeeding S."
The criticism by Nessett has sparked a de-

bate that has led to a clearer understanding of
the role of knowledge and belief in the anal-
ysis of key management schemes. Much work
has refered back to the research of Shoham and
Moses [49] that speci�cally de�nes the relation-
ship between belief and knowledge.

7.3 Extensions to the BAN Logic

The BAN logic was purposely designed to be
open ended. That is, new constructs and pos-
tulates can be added to suit a particular appli-
cation. It is not unusual to customize the BAN

logic for an application to analyze a protocol to
which the original BAN logic does not directly
apply.
Some of these extensions have focussed on

eliminating some of the assumptions in the
original BAN logic. Others have been necessary
for expanding the reasoning power of BAN. In
the following sections we discuss some exten-
sions to the logic.

7.3.1 The GNY logic

The Gong, Needham and Yahalom [20] exten-
sions to the BAN logic are often referred to as
the GNY logic. Gong et al. describe new con-
structs that eliminate some of the assumptions
made by the original BAN logic. In particular,
the GNY logic does not assume that redun-
dancy exists in encrypted messages. Instead,
they introduce the notion of recognizability to
represent the fact that a principal expects cer-
tain formats in the messages it receives. Also,
Gong et al. explicitly represent whether a prin-
cipal generated a message itself.
The notion of recognizability is important. A

principal participating in a protocol has expec-
tations about the messages he will receive, and
the analysis technique should take these into
consideration. Thus, if a protocol step speci-
�es that A will receive nonces, Na and Nb, then
the next two values received will be treated as
nonces. Logical postulates are added to require
that a principal's expectations according to the
protocol are met. These rules are de�ned be-
low.
One of the important contributions of the

GNY logic is the recognition that belief and
possession are di�erent. In this extended logic,
each principal maintains a belief set and a pos-
session set. Along with the basic constructs of
BAN, the following are included in the GNY
logic:

P / X P is told formula X. P receives X, pos-
sibly after performing some computation
such as decryption. A formula being told
can be the message itself, as well as any
computable content of that message.

P 3 X P possesses, or is capable of possessing
formula X. At a particular stage of a run,
this includes all the formulae that P has

17

Rubin & Honeyman

been told, started the session with, or was
able to compute for formulae he already
possesses.

�(x) The formula X is recognizable. If P be-
lieves �(x), then P would recognize X if P
had certain expectations about the nature
of X.

P / X P is eligible to send formula X. A prin-
cipal is only eligible to send something that
he possesses or can construct. P is eligible
to send formula X. A principal is only eli-
gible to send something that he possesses
or can construct.

A formula in GNY may also be regarded as
a not-originated-here formula, meaning that it
was not previously generated by a principal in
the current run. This is represented by adding
an aserisk (*) to the formula; and the paper [20]
describes a mechanical process by which this is
achieved.
The following postulates are de�ned:

P / X

P 3 X

which states that principals possess what they
are told, and

P 3 X;P 3 Y

P 3 (X;Y); P 3 F (X;Y)

which states that if a principal possesses X and
Y, he also possesses the concatenation of X and
Y, and any computable function F of X and Y.
Similarly for recognizability,

P believes �(X)

P believes �(X;Y); P believes �(F (X))

states that if a principal believes that X is rec-
ognizable, then that principal believes that the
concatenation of X with anything is recogniz-
able, and that the application of some com-
putable function to X is recognizable.
An important postulate in GNY states that

if
C1

C2

is a postulate, then for any principal, P, so is

P believes C1

P believes C2

This is called the rationality rule and allows
principals to reason about the state of other
principals.

Gong et al. de�ne preconditions that can be
attached to rules to achieve di�erent levels of
belief. \Since we do not require the univer-
sal assumption that all principals are honest
and competent, we should reason about beliefs
held by others based on trust of di�erent lev-
els." Precondition statements are attached to
formulas, and GNY provides trust and juris-
diction postulates for reasoning with precondi-
tions.

The GNY logic is used to uncover the weak-
ness in the Needham and Schroeder protocol.
Then, the enhanced Needham and Schroeder
protocol is analyzed and a second-level belief is
attained. This logic is an improvement over the
BAN logic in that it separates the content from
the meaning of a message. Thus, the results of
an analysis will be determined by the level of
trust placed between principals. The original
BAN logic did not accommodate for di�erent
levels of trust. Thus, the GNY logic increases
the classes of protocols that can be analyzed.

In a later paper, Gong describes enhance-
ments to the GNY logic to handle infeasible
protocol speci�cations [19]. The problem is
that a speci�cation that could not possibly rep-
resent a real world situation can still be veri�ed
to be correct in the BAN and GNY logics. An
example of such an infeasible speci�cation is a
protocol in which P sends R's password to Q.
If R's password is represented by X, then this
protocol step is:

P ! Q : fXgKPQ

As P and Q are not supposed to know R's pass-
word, this protocol is not feasible, and yet the
GNY logic could not detect this.
Another type of infeasible speci�cation that

GNY and BAN cannot detect can lead to be-
liefs that do not preserve a causal relation. Say
we have the protocol step:

P ! Q : fP believes P
S
$ QgKPQ

This will cause Q believes P believes P
S
$ Q,

however, if it is not the case that the state-

ment P believes P
S
$ Q already existed, then

18

Formal Methods for the Analysis of Authentication Protocols

the causal relation between beliefs is not pre-
served. Without guarantees of causality, part
of a causal chain may be broken, and then the
path may not be trusted (e.g. [27]). The causal
chain is broken any time a principal, P sends a
message that contains a belief, and P does not
hold that belief.
The BAN logic assumes that principals be-

lieve what they say, and so the infeasible spec-
i�cation due to causal relations is not an issue.
Gong introduces the notion of eligibility to the
GNY logic. Thus, if P / X, then P is eligible
to send formula X. Thus, new postulates are
added to the logic:

P ! Q : X;P / X

Q /X

This rule states that if P sends X to Q, and P
is eligible to send X, then Q receives X. Simi-
larly,

P 3 X

P / X

This rule says that if P possesses X, then P is
eligible to send X. Other rules are included to
describe when a principal is eligible to encrypt
with a key, K, or to perform a hash function.
Thus, using the extensions to the GNY logic,

we can reason about protocols whose speci�ca-
tion fall into two categories of infeasibility. Al-
though Gong's work is useful, it appears that
a more formal technique is needed to discover
infeasible protocols in the general case.

7.3.2 The Mao and Boyd logic

Mao and Boyd [32] describe four weaknesses in
the BAN logic and propose a new logic, based
on BAN, which o�ers several improvements.
Mao et al. also present a fault in a version
of the Otway-Rees protocol [43] that the au-
thors of the BAN logic proved to be correct [7].
Finally, a revised version of Otway-Rees is pre-
sented by Mao et al. and proved correct with
the new logic.
Mao and Boyd discuss the following defect of

the BAN logic:

1. Protocol Idealization

2. Belief

3. Protocol Assumptions

4. Con�dentiality

The authors discuss these defects and give ex-
amples.
Protocol idealization su�ers from too much

exibility. New terms and constructs can be
freely chosen froman in�nite alphabet provided
by the original BAN logic. Also, as Mao et
al. point out, \There seems to be no well-
understood semantic rule to govern this job of
idealization." [32]
The aw in protocol idealization can be seen

clearly if we view a protocol speci�cation as a
procedure declaration. Once formal parame-
ters are substituted with \real values," the be-
havior is unpredictable. The authors make this
analogy and and use it to demonstrate the aw
in the Otway-Rees protocol. The GNY logic
[20] is also criticized for using the same ideal-
ization rules, and thus su�ering the same weak-
ness.
In the original BAN logic, the nonce veri�-

cation rule is:

P believes #(X); P believes Q said X

P believes Q believes X

From this we draw the conclusion that Q be-
lieves X, which is a nonce. However, as Mao et
al. point out, it does not make sense to believe
a nonce. One can believe that X is a nonce, or
that nonce X is fresh, but one cannot believe
a nonce.
Mao and Boyd claim that the method for

determining assumptions in a protocol is awed
in the BAN logic. A slight modi�cation to the
assumptions could turn a useless protocol into
a valuable one or vice versa. Also, there is no
way to know if the assumptions are the weakest
ones possible. This is obviously desirable.
The last defect of the BAN logic discussed by

Mao et al. has to do with con�dentiality. The
authors use the Nessett example [42] to show
that a BAN analysis fails to recognize some
protocols that give away secrets to attackers.
Thus, those pieces of information that must re-
main secrets must be explicitly designated as
such.
The new logic presented by Mao and Boyd

requires strict typing of formulas and mes-
sages. Thus, a principal may no longer believe
a nonce, because a nonce is not of a type that

19

Rubin & Honeyman

may be believed. In addition, a new idealiza-
tion process is de�ned. This process is mostly
mechanical, and requires little human interven-
tion. However, as some part of the process re-
quires non-automated judgement, this method
still su�ers from the very criticism the authors
have of the original BAN logic.

In the new idealization, challenges and re-
sponses are linked. The human interaction is
to determine the types of the various parts
of messages, and which responses to associate
with the challenges. A new construct, sup(Q)
is de�ned to represent the fact that Q is a
\super" principal. This means that Q is en-
tirely trusted. An example of this would be
an authentication server in the Needham and
Schroeder protocol [40]. This is necessary be-
cause a principal should not be trusted only on
certain beliefs. If a principal is trusted, it must
be entirely trusted.

New inference rules are added in the Mao and
Boyd logic. They are very similar to rules in
the BAN logic, but include the sup construct,
and are based on the mechanical idealization
process. However, the reasoning process is
quite di�erent. Mao and Boyd used the tableau
method [17]. The reasoning starts with the de-

sired conclusion, such as A believes A
K
$ B,

and �nds rules that lead to that conclusion.
Thus, reasoning proceeds backwards until the
initial assumptions are found. This method
�nds the weakest pre-conditions if necessary
conditions are always found when searching for
rules to apply.

The new logic is applied to the Nessett pro-
tocol to uncover the known weakness. Then, a
revised version of Otway-Rees is given, and the
new logic is used to prove that no conditions
are violated when applying rules from the as-
sumptions to the conclusions. Because the logic
is not complete, this is the strongest statement
that can be made from such a system.

The system described by Mao and Boyd rea-
sons monotonically, as does the BAN logic, so
there is no provision for refutation of belief.
Human intervention still exists but is much
more limited. While this logic is an improve-
ment over previous ones, it does not provide a
mechanism for proving that a protocol is cor-
rect.

7.3.3 Extending BAN to deal with
PKCS

To analyze a public key crypto system (PKCS),
the CCITT X.509 Strong Two-Way Authenti-
cation Protocol, Gaarder and Snekkenes [18]
extend the BAN logic. The following con-
structs are introduced to represent public key
cryptography and time6:

PK(K;U) The entity U has associated the
good public key K.

�(U) The entity U has associated some good
private key. The key value is only known
by U .

�(X;U) The formulaX is signed with the pri-
vate key belonging to U .

(�(t1; t2); X) X holds in the interval t1; t2.
The creator that uttered the time-stamped
message X claims that X is good in the
time interval between t1 and t2.

�(t1; t2) The local unique Real Time Clock
(RTC) shows a time in the interval be-
tween t1 and t2.

According to the rules for public key cryp-
tography, we have the rule

Ui sees �(X;Uj)

Ui sees X

which states that any principal seeing a formula
signed with another principal's private key, can
see that formula.
The following rule deals with duration

stamps. That is, a formula is good for a certain
interval. This is necessary because the CCITT
X.509 protocol being analyzed involves the use
of time and a real clock.

P believes Q believes �(t1; t2);
P believes Q said (�(t1; t2); X)

P believes Q believes X

This is similar to one of the rules in the origi-
nal BAN logic, but it restricts the time during
which this rule can be applied to a \good" in-
terval. Calvelli and Varadharajan [9] reason
about time in a similar way by introducing a

6Recall that the original BAN logic has no provisions
for reasoning about time.

20

Formal Methods for the Analysis of Authentication Protocols

rule of the form (Bi ^ t)says r that means that
Bi says r at or before time t.
Gaarder et al. also introduce the construct

R(P;X)

to say that P is the intended recipient of mes-
sage X. An example of this would be

P ! Q : R(Q;X); X

where R(P;X) is a tag telling Q that he is the
intended recipient of the message.
The authors then proceed to formalize the

goals of the protocol, and idealize the protocol.
The extended BAN logic is then used to prove
that the protocol meets its goals.

7.3.4 Adding probabilistic reasoning to
BAN

BAN logic is \...concerned with evaluating the
trust that can be put on the goal by the legit-
imate communicants using beliefs of the prin-
cipals," according to Campbell et al. [10]. It
\has no provisions for modeling insecure com-
munication channels or untrustworthy princi-
pals and, in fact, fails to model any type of
insecurity."
Campbell et al. extend the BAN logic us-

ing probabilistic reasoning to calculate a mea-
sure of trust rather than complete trust. That
is, given assumptions about the level of trust
among principals, and a protocol, we can an-
alyze the level of trust that this protocol
achieves.
The authors de�ne the analysis problem in

terms of an equivalent linear programming
problem as follows:
Let p1; :::; pn be an assignment of probabili-

ties to the assumptions a1; :::; an of a proof of
the conclusion c. Then, L � P (c) � U , and
the lower limit L (respectively upper limit U)
can be obtained by solving the linear program:

minimize (resp. maximize) z = q � �
subject to the constraints W� = p

1 � � = 1; � � 0

The simplex algorithm can then be applied
to �nd a minimal solution. This method is then
applied to the Needham and Schroeder pro-
tocol. This method easily reveals the known

weakness. It also shows that the assumption
that Kab is a good key is responsible for this
weakness.
The weakness of the Needham and Schroeder

protocol was discovered by the extensions of
Campbell et al., as the original BAN logic does,
without using prior knowledge of it. Although
this is a promising result, it does not constitute
a proof that the protocol is secure, due to its
incompleteness.
One weakness of schemes such as that pre-

sented by Campbell et al. [10] is di�culty of
use. The original BAN logic has been praised
for its simplicity, so it seems, and intuition also
dictates, that there is a tradeo� between the
ease of use of an analysis tool and its utility.

7.4 The CKT5 Logic

Bieber [2] extends the epistemic logic of Hin-
tikka [22]. This new logic of communication
in a hostile environment, called CKT5, allows
a user to describe the states of knowledge and
ignorance associated with the communication
via encrypted messages. Bieber also extends
the logic of knowledge and time, KT5, of Sato
[47] with operators that relate directly to the
sending and receiving of messages.7

To describe a protocol, P , in CKT5, we de-
�ne ' to be the way principals behave when
participating in P , and ! states who knows
what when the protocol terminates. Then,
' ! ! is a CKT5 formula that describes P .
Next, it must be proved that ' ! ! is a theo-
rem. An example of a member of ' is \if prin-
cipal A has sent m encrypted under K, then
he must have received m at some point in the
past." Similarly, ! contains statements such as
\At time t, A knows that k is a crypto key."
CKT5 extends the basic epistemic logic by

adding modal operators to express the trans-
mission and receipt of messages. The usual
connectives are used, ^;_;:;);,, along with
the quanti�ers, 8; 9, and equality of terms (=).
In addition, Bieber de�nes modal operators
KA;t; RA;t and SA;t. If A and B are principals,
t is a number representing time, and ' is a well

7The following summary of Bieber's logic borrows
examples from Snekkenes [53], who gives an excellent
summary of CKT5, and from the original paper by
Bieber [2].

21

Rubin & Honeyman

formed formula in CKT5, and m;n;m1, and k
are terms, then the following are de�nitions in
CKT5.

KA;t' At time t, A knows that ' holds.

RA;t' At time t, A received somemessage stat-
ing that ' holds.

SA;t' At time t, A sent some message stating
that ' holds.

m:m1 The concatenation of m and m1.

d(k;m) The decryption of m with key k.

nonce(n; t; A) n is a nonce generated at time
t by the system at the request of A.

private(t; fA;Bg; k) k is a symmetric key
shared by A and B.

key(k) k is a symmetric key.

KA;tmsg(m) At time t, A knows that m is a
computable term8.

belongs(m1;m2) m1 occurs as a subterm of
m2.

clear(m) m is a clear text message.

clean(m) m is a clear text message, the con-
catenation of two clean messages or can be
decrypted to yield a clean message.

n s clean(m) m contains a subterm that is
not necessarily well built9.

The logic assumes uncertain communication, so
that if a message is intercepted by an intruder,
it may not arrive at its destination. Messages
are not lost, but the intruder can prevent them
from reaching a target.
Bieber de�nes univoque messages to be ones

that for agent X at time t, are well built Log-
icwith exclusively clear text messages and keys
known only by X at time t. Formally:

univoque(X;t;m)$ KX;t clear(M)
_ (9k KX;tkey(k)^ univoque(X;t; d(k;m)))
_ (9m1 9m2 m = m1:m2^ univoque(X;t;m1)^

univoque(X;t;m2))

8Bieber de�nes a computable term as a clean mes-
sage, or a concatenation of two not so clean terms (con-
taining some encrypted part), or the result of perform-
ing a cryptographic function on a not so clean term [2].

9Bieber de�nes a well built term as a clear text term,
or the concatenation of two clear text terms, or the
encryption or decryption of a clear text term [2].

Thus, X knows that a message is usable if it
is univoque.
Bieber makes the recommendation that

knowledge rather than belief be used to guaran-
tee security because epistemic logics are better
at describing the behavior of other agents, as is
seen by a strong logic such as CKT5. Syverson
makes a similar recommendation [56].
Snekkenes gives an example application of

CKT5 [53] with KP , a protocol similar to the
Needham and Schroeder protocol. CKT5 is
modi�ed so that it can distinguish between the
role of a principal and its name. This is done
simply by introducing a predicate \role-R" that
maps principals to their roles in a protocol.
The proof that KP is secure points out the

weakness of CKT5. As it is known thatKP has
a aw (discussed in section 3.1), the fact that
it can be proved correct in CKT5 demonstrates
that strictly epistemic logics, as we know them,
are not su�cient for analyzing the security of
authentication protocols.

7.5 Analysis of Belief Evolution

An authentication protocol analysis can be
viewed as the evolution of the beliefs of the
principals involved. Kailar and Gligor [27]
present a logic similar to the BAN logic for
reasoning about the evolution of belief within a
protocol run. The types of protocols that can
be analyzed with this logic include interdomain
authentication, and protocols where trust in an
encryption key must be established despite the
lack of jurisdiction.
In this logic, beliefs in a protocol run evolve

as in a state machine, where a current belief
and an action determine the next state of belief.

Belief + Action) New Belief

The concept of a knowledge set for each message
content is introduced. A knowledge set is a
set of principals who know the contents of a
message, a, and a given round in the protocol,
Mi. Here, Mi stands for message M at instant
i in the protocol run.
A message is represented as:

fMessage round; Sender;Receiver; Contentsg

The sender and receiver �eld correspond to
signing with a given key, or in the case of sym-

22

Formal Methods for the Analysis of Authentication Protocols

metric keys, to the encryption with a session
key. Thus,

Y . fMk; Y;X;Cg

denotes that Y sends message M with content
C in round k of this session to principal X.
Similarly,

X / fMk; Y;X;Cg

denotes that X sees messageM in round k and
knows that it is sent by Y . It also reads the
message contents C.
Kailar and Gligor's logic represents trust ex-

plicitly, thus avoiding some of the problems
that arise in the BAN logic based on trust
assumptions. The statement TRUSTR(P;Q)
means that P trusts principal Q in the con-
text R. Trust means that if Q says X, and P
trusts Q, then P believes X. In the analysis,
a forwarded message is viewed as being sent
from the originator directly to the destination.
As the intermediary cannot read the contents,
this short circuit makes sense.
One noteworthy assumption made in this

logic is that principals can distinguish between
messages from a current session, and messages
from other sessions. Without this, an incon-
sistent state of beliefs can be attained due to
unrelated message histories.
The logic contains inference rules similar to

those of the BAN logic. Most of the rules
are concerned with maintaining the knowledge
sets, and these sets are what allow principals to
reason about the evolution of other principals'
beliefs in a protocol. The �rst inference rule
presented is the belief in uniqueness of message
receipt. This rule states that if X sends a mes-
sage, Mi, to Y , and X believes that Z reads
the message, then X believes that Z = Y .

X . fMi; X; Y; Cg;
X believes fZ / fMi; X; Y; Cgg

X believes fZ = Y g

The following rule de�nes how knowledge sets
are maintained. Here, KS(a;Mi) stands for
the knowledge set of contents a of messageMi,
and this set contains the principals who know a
after having received message Mi. Kailar and
Gligor use C to denote the contents of a mes-
sage, except in the case of knowledge sets where
a is used. We follow their conventions.

X believes KS(a;Mi) = fS1g;

X believes KS(a;Mj) = fS2gjj � i > 0

X believes 8Y 2 fS2g � fS1g;

9P; kjP 2 S; i < k � j;Y / fMk; P; Y; ag

This states that if the knowledge set for some
contents a in a later round number contains
principals that are not in the knowledge set
of an earlier round number, then those prin-
cipals must have received a message with that
contents during the time interval between the
rounds.
Other rules in the logic describe when a for-

mula can be included in a knowledge set, the
freshness of nonces, and the freshness of mes-
sage content. They are similar in style to the
ones above and can be found in the original
paper [27].
Kailar and Gligor compare the use of their

logic to the BAN logic for the analysis of some
well known protocols such as an inter-domain
authentication protocol, a PROXY ticket for-
warding protocol, and a multiparty session pro-
tocol. They show that their analysis preserves
the accumulation of beliefs of all the principals
in the system, whereas the BAN analysis falls
a bit short.
Calvelli and Varadharajan [9] use this logic

to analyze some delegation protocols for Ker-
beros, which is evidence of the usefulness of the
logic. Others have also used it to analyze new
systems. The ease of use of Kailar and Gligor's
logic is seen by its applicability to many prob-
lems. This advantage is signi�cant as is seen
from the complexity and resulting lack of use
of methods in the Type IV approach discussed
later.

7.6 Semantics of Logics of Au-
thentication

The utility of formal protocol analysis is lim-
ited by the quality of the tools we are using.
Just as we have formal methods for evaluating
protocols, it is useful to be able to reason about
the tools themselves.
According to Syverson [57], \One of the main

roles of a semantics is to give us a means to
evaluate our logics. When evaluating a logic we
are primarily interested in two questions: Can
we derive everything we want? (Completeness)
And, can we avoid deriving things we don't
want (Soundness)." In general, we seem to be

23

Rubin & Honeyman

more concerned with soundness, whereas, for
computer security, \completeness is of the ut-
most importance" [57].
The reason we need to ensure that we can de-

rive anything possible is that many logics rely
on the generation of all possible security aws.
If a logic is incomplete, (as is the original BAN
logic [7]), then there may be aws that are over-
looked. \A formal semantics provides a precise
structure with respect to which soundness and
completeness of a logic may be proven" [57].
However, as Syverson explains, the semantics
must not be derived directly from the logic.
An independently derived semantics for a logic
serves as a valuable tool in evaluating the logic.

7.6.1 A semantics for the BAN logic

Abadi and Tuttle [1] de�ne a semantics for
the BAN logic. They de�ne belief as a form
of resource-bounded defeasible knowledge, us-
ing a possible-worlds semantics. First, they
remove some unnecessary assumptions in the
original assumptions by introducing new con-
structs. Then, the semantics are formally de-
�ned.
The original BAN logic assumes that prin-

cipals are honest, in that they believe in the
truth of the messages they send. To remove
this assumption, a new construct is introduced,
`X', which is read \forwarded X," that is used
for messages that were not constructed by the
principal sending them. Another construct in-
troduced before the semantics are de�ned is \P
says X" to represent the fact that P has sent
X in the present. Using this, a new postulate
is introduced that states that if P said X and
X is fresh, then P says X. This promotes from
knowledge to belief.
Another construct deals with shared secrets.

If P and Q share a secret, s, then hXQis repre-
sents the combination (usually concatenation)
ofX and s. This is usually used to demonstrate
knowledge of a secret.
The BAN logic is reformulated to de�ne the

semantics precisely. For the complete descrip-
tion, the reader is referred to the paper [1]. We
give a summary of the more important aspects
of the semantics. The following actions are de-
�ned for a principal P :

send(m;Q) denotes P 's sending of the mes-

sage m to Q. The message m is added to
Q's message bu�er.

receive() denotes P 's receipt of a message.
Some message m is nondeterministically
chosen and deleted from P 's message
bu�er.

newkey(K) denotes P 's coming into posses-
sion of a new key. The key K is added to
P 's key set.

seen-submsgsK(M) is de�ned as the union of
the set fMg and

1. seen-submsgsK (X1) [� � � [seen-
submsgsK (Xk)if M = (X1; � � � ; Xk)

2. seen-submsgsK (X) if M =
fXQgK and K 2 K10

3. seen-submsgsK (X) if M = hXQis

4. seen-submsgsK (X) if M = `X'

said-submsgsK;M(M) This is de�ned almost
the same way as seen-submsgsK (X) ex-
cept that the fourth condition also stipu-
lates that X 62 seen-submsgsK (X).

Next, Abadi and Tuttle describe the syntactic
restrictions on a protocol run, r, a time k, a
key set K, a principal P , and M , the set of
messages P has received before time k.

1. A principal's key set never decreases: If K0

is P 's key set at time k0 � k, then K0 � K.

2. A message must be sent before it is re-
ceived: If receive(M) appears in p's lo-
cal history at time k, then send(M;P) ap-
pears in some principal Q's local history
at time k.

3. A principal must possess keys it uses
for encryption. Suppose that action
send(M;Q) appears in P 's local history
at time k and that fXRgK 2 said-
submsgsK;M (M). Then, either fXRgK 2
seen-submsgsK (M) or K 2 K.

4. A system principal sets \from" �elds cor-
rectly: if send(M;Q) appears in P 's lo-
cal history at time k and fXRgK 2
said-submsgsK;M (M), then P = R or

10P 's key set.

24

Formal Methods for the Analysis of Authentication Protocols

fXRgK 2 seen-submsgsK (M). Simi-
larly, if send(M;Q) appears in P 's local
history at time k and hXRiY 2 said-
submsgsK;M (M), then P = R or hXRiY 2
seen-submsgsK (M).

5. A system principal must see messages
it forwards: if send(M;Q) appears in
P 's local history at time k and `X' 2
said-submsgsK;M (M), then X 2 seen-
submsgsK (M).

Once the syntax has been de�ned, the se-
mantics can be described. The de�nition of
(r; k) j= ' is inductive on the structure of '.
An interpretation � maps each p 2 � to the set
of points �(p) at which p is true. So,

(r; k) j= p i� (r; k) 2 �(p) for primitive p 2 �

(r; k) j= ' \ '0 i� (r; k) j= ' and (r; k) j= '0

(r; k) j= :' i� (r; k) 6j= '

Next, the semantics are described for the vari-
ous constructs in the logic. For example P sees
X at (r; k) is de�ned as

(r; k) j= P sees X

i�, for some message M , at time k in r

� receive(M) appears in P 's local history

� X 2 seen-submsgsK (M), where K is P 's
key set.

Also, P has jurisdiction over ' at (r; k) is de-
�ned as

(r; k) j= P controls '

i� (r; k0) j= P says ' implies (r; k0) j= ' for all
k0 � 0.
The other constructs in the BAN logic are

de�ned similarly in the semantics. The notion
of belief is captured using a possible-worlds se-
mantics where a principal believes a fact if that
fact is believed in all the possible worlds known
to that principal at that time. Abadi and Tut-
tle [1] prove that this axiomization is sound,
but state that they doubt it is complete. They
give an example of a formula that is valid, but
cannot be generated using the logic:

(P controls (P has K) ^

P says (P has K; fXPgK)) � P says X

In the semantics described by Abadi and
Tuttle, choosing good protocol runs is impor-
tant. They do not allow an initial assumption
with a negative belief, such as Pi does not be-
lieve K is a good key. This seems to be a rea-
sonable assumption. As the authors state, \In
every application of this logic that we are aware
of, the initial assumptions satisfy this restric-
tion."

7.6.2 A semantic model for authentica-
tion protocols

Woo and Lam [67] present a semantic model for
authentication protocols. They identify corre-
spondence and secrecy as two correctness prop-
erties. Correspondence speci�es that di�erent
principals in a protocol must execute steps in
a locked-step fashion. This represents the idea
that a protocol step can be in response to a
previous protocol step, and not just an inde-
pendent event.
The authors de�ne an action schema to spec-

ify the steps in a protocol. In protocol speci-
�cation, each of these actions is preceded by a
label. The actions allowed are:

BeginInit (r) NewNonce (n)
EndInit (r) NewSecret (S; n)
BeginRespond (i) Send (p;M)
EndRespond (i) Receive (p;M)
Accept (N) GetSecret (n)

The meanings of these actions are for the most
part intuitive. A notable exception is the Get-
Secret action. This is used to model the com-
promise of an old key by the intruder. The ac-
tion would not be included in a protocol spec-
i�cation, but rather, on the consequence side
of a rule, and serves to eliminate timeliness re-
quirements.
A protocol speci�cation begins with a set

of initial conditions, followed by the protocol
for each participant. For example, the au-
thors specify the Otway-Rees protocol [43] us-
ing their model. The speci�cation takes the
form.

1. Initial Conditions

2. Initiator Protocol
3. Responder Protocol

4. Server Protocol

25

Rubin & Honeyman

Notice that although the Otway-Rees protocol
does not di�erentiate between the communicat-
ing principals, Woo and Lam explicitly desig-
nate the roles as initiator and responder.
The main di�erence between this work, and

that of Syverson [56] is that Woo and Lam
specify protocols as programs and are con-
cerned with a general formalism of correctness,
whereas Syverson is more concerned with logic.
The approach by Woo et al. is revolutionary in
that it recognizes and formalizes the notion of
correspondence in authentication protocols.

7.7 A Nonmonotonic Logic of Be-
lief

All of the logics we have discussed so far have
dealt with monotonic knowledge and belief.
However, in a real world model, our beliefs can
change. For example, if a session key is com-
promised, we need to change our belief that this
is a good key.
Moser [39] describes a nonmonotonic logic

of belief based on a monotonic logic of belief
and knowledge. She describes the standard S5
[11] knowledge axioms. Here Ki(p) means that
principal i knows p.

1. Ki(p)) p

2. Ki(p) ^Ki(p) q)) Ki(q)

3. :Ki(p)) Ki(:Ki(p)) (Negative intro-
spection)

4. ` p infer Ki(p)

Axiom 4 corresponds to the axiom T described
by Syverson [61] (see section 7.1). Also, Moser
points out that positive introspection is easily
derivable from the above axioms. The axioms
for belief are the standard KD45 axioms [11],
and are the same as those described by Rangan
[44] (see section 7.1).
In Moser's logic, a belief is considered true

unless it is stated otherwise. She introduces a
new predicate, unless whose value can be seen
from the following truth table (where F is a
conjunction of formulas containing the unless
operator).
The de�nition of unless is given by the truth

table in Figure 5. The x in the last row is

Bi(p) Bi(q) Bi(p) unless Bi(q)

t t f
f t t
t f t
f f x

Figure 5: The De�nition of Moser's unless
operator The x in the last row indicates a spe-
cial case. x is true i� 9r : Bi(p) unless Bi(r) 2
F , where F is a conjunction of formulas con-
taining the unless operator.

the most interesting part of the de�nition and
indicates a special case. x is de�ned as follows:

x =

8<
:

t if 9r : Bi(p) unless Bi(r) 2 F
and Bi(r) is true

f otherwise

Thus, the value of the unless operator depends
on the context in which it appears. This de�-
nition allows for any belief to be held unless it
is refuted somewhere else in the formula.

Moser proceeds to give an application of this
logic for a key distribution protocol. Although
her logic provides for a new type of reasoning,
there are a few shortcomings. Moser does not
discuss the tractability of her logic other than
pointing out that if quanti�cation were added
to the logic, it would be undecidable. Also,
Moser makes no mention of soundness and com-
pleteness. Perhaps a formal semantics for this
logic would help answer such questions.

Another shortcoming of Moser's logic is that
it deals with the nonmonotonicity of belief, and
mentions nothing of the nonmonotonicity of
knowledge. In fact, there is no way to reason
about a principal forgetting some information.
An example of such a protocol is the khat sys-
tem [46] of Rubin and Honeyman. The security
of khat is based on the notion that a vacant
workstation erases some information from its
memory so that an intruder gains nothing from
compromising the machine. To reason about
such systems, we need a nonmonotonic logic of
knowledge as well as belief. Moser's logic does
not provide this.

26

Formal Methods for the Analysis of Authentication Protocols

8 Type IV Approach

The Type IV approach to protocol analysis de-
velops a formal model based on the algebraic
term-rewriting properties of cryptographic sys-
tems. This approach was introduced by Dolev
and Yao [16], and has since been pursued by
Syverson [55, 60], Meadows [33, 34, 35, 36], and
Woo & Lam [67]. The more recent applications
of this approach have provided automated sup-
port for the analysis, and have enabled a user
to query the system for known attacks.
The Type IV approach generally involves an

analysis of the attainability of certain system
states. In this regard, it is similar to some of
the Type II approaches discussed earlier. How-
ever, the Type IV approaches try to show that
an insecure state cannot be reached, whereas
the Type II approaches began with an insecure
state and attempted to show that no path to
that state could have originated at an initial
state.

8.1 Dolev and Yao

Dolev and Yao [16] proposed the �rst algebraic
model for the security of protocols. Their pro-
tocols dealt more with the distribution of se-
crets than authentication, although the two are
closely linked. The main di�erence is that we
generally think of authentication as involving a
third party authentication server, whereas the
Dolev and Yao protocols dealt with only two
parties.
Dolev and Yao de�ne some classes of proto-

cols. They reason about these classes of pro-
tocols rather than individual protocols them-
selves, and prove some interesting properties
of these classes. For example, cascade proto-
cols and name-stamp protocols are examined. A
cascade protocol is one in which a user can ap-
ply the public key encryption-decryption oper-
ations in several layers, to form messages. The
authors prove that such protocols are secure if
and only if the following conditions hold:

1. The messages transmitted between X and
Y always contains some layers of encryp-
tion functions Ex or Ey

2. In generating a reply message, each par-
ticipant A (A = X;Y) never applies DA

without also applying EA.

Similarly, Dolev and Yao provide a polynomial-
time algorithm for deciding if a given name-
stamp protocol is secure.
Dolev and Yao not only show how to model

protocols algebraicly, they consider whole
classes of protocols and demonstrate how to
reason about any protocol that shares certain
properties.

8.2 Using the NARROWER Al-
gorithm for Protocol Analysis

According to Meadows [33], \A cryptographic
protocol may be thought of in part as a set of
rules for generating words in some formal lan-
guage." We can de�ne algebraic operations on
these words, such as encryption and decryp-
tion. The security of a protocol can then be
based on the ability of an intruder to generate
certain words in the language.
The operations in a term-rewriting system

are the reductions of terms using the cancel-
lation properties of the words in the system.
Examples of such rules are:

1. d(X; e(X;Y))! Y

2. e(X; d(X;Y))! Y

which de�ne the symmetric properties of en-
cryption and decryption. An intruder can at-
tempt to see if any words available to him can
reduce to some secret word, say a session key.
Meadows [33] uses the NARROWER [45] al-

gorithm, which she has implemented in Pro-
log [13] to analyze the IBM key management
scheme [14] mentioned in Section 6.2. The al-
gorithm begins with a trivial set (possibly the
empty set) of words available to the intruder,
and an initial state. A set of secrets, which
the intruder should not learn, is also de�ned.
The algorithm attempts to show that there is
no path through the protocol, beginning at the
initial state, that leads to a state where the in-
truder can learn words in the secret set.
The algorithm works by induction on the

length of the path, beginning with the trivial
set, and continues until no more paths can be
generated. For any m, we can state that no
\dangerous" path of length less than or equal
to m exists. The user can interact with the

27

Rubin & Honeyman

program to improve on the tractability of the
problem by modifying the initial set, and the
rules available.
In a later paper [35], Meadows analyzes

the Burns-Mitchell resource sharing protocol
[6] using an analysis tool based on the same
term-rewriting properties utilized by the NAR-
ROWER. This system models the knowledge
and belief of the intruder, and de�nes a set
of rules whereby an intruder can learn new
information based on protocol steps. Using
this technique, Meadows demonstrates the ex-
istence of a aw in the Burns-Mitchell proto-
col. Meadows suggests a �x to this protocol,
and then uses the analysis technique to show
that the attack no longer succeeds.
In the analysis of the IBM key management

scheme, it is shown that certain secrets are un-
obtainable by a penetrator unless a session key
has been compromised. However, such a proof
is not a proof that the protocol is secure; this
would require proving that the term-rewriting
system is complete, i.e., that every valid word
can be generated. Unfortunately, the system is
not complete. Another requirement for proving
that a protocol is secure is that the method for
formalizing the protocol, must itself be formal,
and it is not.
Thus, methods such as using the NAR-

ROWER can be used to �nd insecurities in a
protocol, but do not constitute a proof that a
protocol is secure.

8.3 The KPL Logic

In the logics presented so far, we have seen ways
of representing the fact that P knows thatKPQ

is the secret key between P and Q. However,
there has been no way to represent simply the
fact that intruder Z knows P 's key. Syverson
calls this a key simpliciter, and his KPL logic
[55, 56] can represent such a fact.
KPL is a quanti�ed modal logic with a cor-

responding possible-worlds interpretation. In
KPL, Z knows P 's key if P 's key is present in
all of the worlds accessible to Z from his cur-
rent set of possible worlds via some transition.
Syverson de�nes a semantics for the logic that
he uses to prove the soundness and complete-
ness of KPL.
As Syverson states, the soundness and com-

pleteness of KPL do not guarantee that there
can be no error in the reasoning about a secure
protocol, but they do prove that there can be
no formal error: \Once we have formally speci-
�ed a protocol, a logical derivation of any result
concerning the speci�cation will be correct |
i.e. true of that speci�cation | and anything
that can be formally shown to be a semantic
consequence of that speci�cation will be prov-
able in the logic."
Syverson does not provide examples of how

to specify an authentication protocol in KPL;
such a speci�cation would be complicated. In
general, the Type IV approaches su�er from a
great deal of complexity, and thus their value
as an analysis tool is diminished.

8.4 The NRL Protocol Analyzer

Syverson and Meadows [60] use the tech-
niques described above, namely, using the
term-rewriting properties of protocol speci�ca-
tions, to develop the NRL protocol analyzer.
This system is used to analyze classes of proto-
cols, and is not tied to any assumptions about
the protocols.
The NRL protocol analyzer allows a single

set of requirements to specify a class of proto-
cols. The following symbols are used:

! represents the standard conditional

^ represents conjunction

�- represents a temporal operator meaning at
some point in the past.

Each principal keeps track of a local round
number for a protocol, and the following ac-
tions are de�ned:

accept(B;A;Mes;N) means that B accepts
the messageMes as from A during B's lo-
cal round N . N is an optional parameter.

learn(Z;Mes) means that the intruder, Z,
learns the word Mes.

send(A;B; (Query;Mes)) means that A
sendsMes toB in response toQuery. The
use of a Query is optional.

request(B;A;Query;N) means that B sends
Query to A during B's local round N .
Query is optional.

28

Formal Methods for the Analysis of Authentication Protocols

From these constructs and actions, require-
ments can be speci�ed. The requirements are
represented by a conjunction of statements.
For example:

Requirement #1

� :(�- accept(B;A;Mes;N)^ �- learn(Z;Mes))

� accept (B;A;Mes;N)!
�- (send(A;B; (Query;Mes))^
�- request(B;A;Query; N))

Requirement #1 contains two conditions,
both of which must hold. The �rst condition
is that if B accepted message Mess from A at
some point in the past, then the intruder did
not learn Mess at some point in the past. The
second condition is that if B accepted message
Mess fromA in B's local round, N , then A sent
Mess to B as a response to a query at B's local
round N .
It is clear from the last sentence why formal

methods are needed to represent such state-
ments. There is a need for a precise description.
If it is not necessary for A to send the message
in response to B's query only after the query,
then we can have the relaxed requirement:

Requirement #2

� :(�- accept(B;A;Mes)^ �- learn(Z;Mes))

� accept (B;A;Mes;N)!
�- (send(A;B;Mes))^ �- request(B;A;N))

The omission of the Query from the send and
request actions are due to the relaxation of the
requirement. Also, it may be required that the
messages from A and B be recent. These can
be speci�ed with the following requirement:

Requirement #3

� :(�- accept(B;A;Mes)^ �- learn(Z;Mes))

� accept (B;A;Mes;N)!
�- (send(A;B;Mes))^ �- request(B;A;N))

� accept (B;A;Mes;N)!
�- (send(A;B;Mes)) ^
:(�- time out(B;N)) ^
:(�- time out(A;N))

The new action, time out, is used to control
currency of messages.
To avoid assumptions such as those made

in the BAN logic [7] that all participants in a
protocol are honest, an honest user A is desig-
nated as user(A; honest), and a dishonest user

as user(A; dishonest), and in the case where
it is not known, a variable Y can be included,
user(A; Y). To specify the requirement that
an honest B accept a message as coming from
an honest A only if it was never previously ac-
cepted by an honest user, Syverson and Mead-
ows [60] provide the following complicated re-
quirement:

Requirement #4

� :�- accept(user(B;honest); user(A; honest),
Mes) _:�- learn(Z;Mes)

� accept(user(B;honest); user(A; honest); Mes;N)
! �- (send (user(A; honest); user(B; honest); Mes)
^�- request (user(B;honest); user(A; honest); N))

� accept(user(B;honest); user(A; honest); Mes)!
:�- accept(user(C;honest); user(D; Y);Mes)

The variable Y states that the message could
not have been accepted by anyone, regardless
of honesty.
The NRL protocol consists of a state space,

where a protocol trace is an in�nite sequence of
states. Amodel is an ordered 4-tuple, hS; I; �; ti
such that S is a state space, I is an interpreta-
tion, � is a trace, and t is time. Satisfaction is
de�ned as hS; I; �; ti j= � means that � is true
at hS; I; �; ti. Syverson and Meadows [60] give
a detailed de�nition of the j= relation in their
paper.
A speci�cation in the NRL protocol ana-

lyzer is modeled on the communication of hon-
est participants. Dishonest participants are as-
sumed to be modeled by the intruder, and so
are not modeled separately. Each honest par-
ticipant possesses a set of learned facts, called
lfacts. Also, a function called intruderknows()
represents the lfacts known by the intruder.
To use the protocol analyzer, a protocol is

speci�ed using the above constructs. Then, a
set, K, of lfacts is de�ned. K may contain a
possible attack by an intruder. The analyzer
then can determine if the set K can meet the
requirements of the protocol. If so, a successful
attack by the intruder can be discovered.
The NRL protocol analyzer consists of four

phases. In the �rst phase, transition rules are
de�ned for the actions of honest principals. In
phase 2, the operations available to all prin-
cipals, such as encryption and decryption, are
described. Phase 3 consists of describing the
atoms used as the basic building blocks of the

29

Rubin & Honeyman

words in the protocol, and the �nal phase de-
scribes the rewrite (reduction) rules obeyed by
the operators. An example of such a rule is:

IF:
count(user(B,honest)) = [M],
lfact(user(B,honest),N ,recwho,11M) =

[user(A;Y)],
not(user(A; Y) = user(B,honest)),

THEN
count(user(B,honest)) = [s(M)],
intruderlearns([user(B,honest),

rand(user(B,honest),M)]),
lfact(user(B,honest),N ,recsendsnonce,
s(M)) = [rand(user(B,honest),M)],

EVENT
event(user(B,honest),N ,requestedmessage,
s(M)) = [user(A,Y),rand(user(B,honest),M)].

This rule describes the sending of a nonce
from an honest principal, B, to some principal
A, whose honesty is unknown.
Operations are described by listing the re-

strictions on them (for example, key length),
and then de�ning their properties. Similarly,
rewrite rules describe the cancellation of oper-
ations. For public key encryption, for example,
a rewrite rule would be:

pke(privkey(X),pke(pubkey(X); Y))) Y

Syverson et al. [60] then give a full speci�cation
and show that the protocol meets the speci�-
cation.
The purpose of the NRL protocol analyzer

is to show that a given protocol speci�cation
meets its requirements. However, this does not
constitute a proof that the protocol is secure.
The NRL protocol analyzer can be viewed as
a tool that, combined with other tools, could
eventually lead to a protocol that can be proven
secure.

9 Conclusions

This paper surveys the current state of research
into the formal analysis of authentication pro-
tocols. The �eld has made substantial progress
in the detection of aws in published protocols
as well as in the development of formal speci-
�cation techniques. We have seen how various

11The word recwho is used by the authors to mean
\the principal who receives this."

techniques from other �elds can be used to rea-
son about security in key management schemes.
We have also seen the weaknesses of such meth-
ods in that they fail to capture the subtle prop-
erties of these protocols, such as their suscep-
tibility to replay attacks.

Some authors have developed expert systems
to experiment with various scenarios in an au-
thentication protocol. Such systems are useful
as tools in the development of protocols, but
have not been able to o�er much in the way of
formal analysis of existing protocols. In par-
ticular, such systems are good at recognizing
known attacks on protocols when they are spec-
i�ed, but have not been able to produce new,
previously unknown attacks.

The predominant technique for analyzing
cryptographic protocols is to use logical reason-
ing about belief and knowledge in the system.
These schemes have been successful in proving
that a protocol meets its formal requirements.
However, a criticism of these systems is that the
process of formalizing the requirements is itself
not formal. To cope with this, semantics have
been presented for reasoning about the logics
themselves. There is a debate as to whether
epistemic logics (knowledge) are preferable to
doxastic logics (belief), but either one can be
used to reason about the other.

Another criticism of logics based on belief
and knowledge is that they are used to model
trust and not security. Although the two are re-
lated, it is clear that they are not interchange-
able.

In addition to the above methods, some have
used the algebraic term-rewriting properties of
protocols to reason about security. This tech-
nique has been successful in uncovering aws
in known protocols. Unlike the modeling with
belief and knowledge, the term-rewriting alge-
bras are highly complex. It it doubtful that
many protocol developers will be able to use
these systems. In contrast, it is common to �nd
analyses of protocols using BAN. However, the
ease of use of techniques such as BAN creates a
danger of misuse by people who do not fully un-
derstand their purpose and limitations, as has
been frequently demonstrated.

Although we have presented numerous ways
to reason about the security of protocols, and
in some cases, to prove that they meet their

30

Formal Methods for the Analysis of Authentication Protocols

requirements, there is no technique known for
proving that a protocol is secure. The reason
for this may be that security itself is not su�-
ciently well de�ned. We can prove that a pro-
tocol is correct, or that it meets its speci�ca-
tion. We can even prove that under various as-
sumptions, certain attacks against a protocol
will not work. However, we have no general-
purpose method of proving that an arbitrary
authentication protocol is secure.
Future research is likely to focus on formal

methods for formalizing authentication proto-
cols. The weakest link in current proofs of se-
curity is the formalization process. We believe
that once all of the aspects of a protocol can
be converted to a formal speci�cation using a
sound and complete formal method, that we
will then be able to assure a proven level of
security.

Acknowledgements

The authors thank Atul Prakash for his excel-
lent advice to pursue this topic; Paul Syver-
son for providing valuable reference materials;
and Mary Jane Northrop for helpful comments
and editing. This work was partially funded by
IBM.

References

[1] Martin Abadi and Mark R. Tuttle. A se-
mantics for a logic of authentication. Pro-
ceedings of the Tenth Annual ACM Sym-
posium on Principles of Distributed Com-
puting, pages 201{216, August 1991.

[2] P. Bieber. A logic of communication in
a hostile environment. Proceedings of the
Computer Security Foundation Workshop
III, pages 14{22, June 1990.

[3] Thomas Blumer and Deepinder P. Sidhu.
Mechanical veri�cation and automatic im-
plementation of communication protocols.
IEEE Transactions on Software Engineer-
ing, SE-12(8):827{843, August 1986.

[4] D.E. Britton. Formal veri�cation of a se-
cure network with end-to-end encryption.

Proceedings of the 1984 Symposium on Se-
curity and Privacy, pages 154{166, May
1984.

[5] L. Brownston and E. Kant. Programming
Expert Systems in OPS5. Addison Wesley,
1985.

[6] J. Burns and C. J. Mitchell. A security
scheme for resource sharing over a net-
work. Computers and Security, 9:67{76,
February 1990.

[7] M. Burrows, M. Abadi, and R. Needham.
A logic of authentication. ACM Transac-
tions on Computer Systems, 8, February
1990.

[8] M. Burrows, M. Abadi, and R. Needham.
Rejoinder to Nessett. Operating System
Review, 24(2):39{40, April 1990.

[9] Claudio Calvelli and Vijay Varadhara-
jan. An analysis of some delegation pro-
tocols for distributed systems. Proceed-
ings of the Computer Security Founda-
tionn Workshop V, pages 92{110, 1992.

[10] E. A. Campbell, R. Safavi-Naini, and P. A.
Pleasants. Partial belief and probabilistic
reasoning in the analysis of secure proto-
cols. In Proceedings of the Computer Secu-
rity Foundationn Workshop V, pages 84{
91, Washington, 1992.

[11] B. F. Chellas. Modal Logic: An Introduc-
tion. Cambridge University Press, 1980.

[12] P. C. Cheng and V.D. Gligor. On the for-
mal speci�cation and veri�cation of a mul-
tiparty session protocol. Proceedings of the
1990 IEEE Symposium on Research in Se-
curity and Privacy, pages 216{233, May
1990.

[13] W. F. Clocksin and C. S. Mellish. Pro-
gramming in Prolog. Springer-Verlag,
1984.

[14] D. W. Davies and W.L. Price. Security for
Computer Networks. Wiley, 1984.

[15] Dorothy E. Denning and Giovanni Maria
Sacco. Timestamps in key distribution
protocols. Communications of the ACM,
24(8):533{536, August 1981.

31

Rubin & Honeyman

[16] D. Dolev and A. Yao. On the security of
public-key protocols. Communications of
the ACM, 29:198{208, August 1983.

[17] M. Fitting. Proof Methods for Modal and
Intuitionistic Logics. D. Reidel Publishing
Company, 1983.

[18] Klaus Gaarder and Einar Snekkenes. Ap-
plying a formal analysis technique to the
CCITT X.509 strong two-way authentica-
tion protocol. Journal of Cryptology, 3:81{
98, 1991.

[19] Li Gong. Handling infeasible speci�ca-
tions of cryptographic protocols. Proceed-
ings of the Computer Security Founda-
tionn Workshop IV, pages 99{102, 1991.

[20] Li Gong, Roger Needham, and Raphael
Yahalom. Reasoning about belief in cryp-
tographic protocols. Proceedings of the
IEEE Computer Society Symposium on
Security and Privacy, pages 234{248, May
1990.

[21] J. Y. Halpern and M. Y. Vardi. The com-
plexity of reasoning about knowledge and
time. Proceedings of the Eighteenth ACM
Symposium on the Theory of Computing,
pages 304{415, 1986.

[22] J. Hintikka.Knowledge and Belief. Cornell
University Press, 1962.

[23] C. A. R. Hoare. An axiomatic basis for
computer programming. Communications
of the ACM, 12(10):576{580, 1969.

[24] John E. Hopcroft and Je�rey D. Ull-
man. Introduction to Automata Theory,
Languages, and Computation. Addison-
Wesley Publishing Company, 1979.

[25] J.H. Howard, M.L. Kazar, S.G. Menees,
D.A. Nichols, M. Satyanarayanan, R.N.
Sidebotham, and M.J. West. Scale and
performance in a distributed �le system.
ACM Transactions on Computer Systems,
6(1):51{81, February 1988.

[26] James W. Gray III and Paul F. Syverson.
A logical approach to multilelvel security
of probabilistic systems. Proceedings of

the 1992 IEEE Computer Society Sympo-
sium on Research in Security and Privacy,
pages 164{176, May 1992.

[27] R. Kailar and V. D. Gilgor. On belief evo-
lution in authentication protocols. Pro-
ceedings of the Computer Security Foun-
dation Workshop IV, pages 103{116, June
1991.

[28] T. Kasami, S. Yamamura, and K. Mori.
A key management scheme for end-to-end
encryption and a formal veri�cation of its
security. Systems, Computers, Control,
13:59{69, May-June 1982.

[29] Richard A. Kemmerer. Analyzing en-
cryption protocols using formal veri�ca-
tion techniques. IEEE Journal on Selected
areas in Communications, 7(4):448{457,
May 1989.

[30] D. Longley and S. Rigby. Use of expert
systems in the analysis of key management
systems. Security and Protection in Infor-
mation Systems, pages 213{224, 1989.

[31] W. P. Lu and M. K. Sundareshan. Secure
communication in Internet environments:
A hierarchical key management scheme
for end-to-end encryption. IEEE Trans-
actions on Communications, 37(10):1014{
1023, October 1989.

[32] Wenbo Mao and Colin Boyd. Towards for-
mal analysis of security protocols. Pro-
ceedings of the Computer Security Founda-
tionn Workshop VI, pages 147{158, June
1993.

[33] Catherine Meadows. Using narrowing in
the analysis of key management proto-
cols. Proceedings of the 1989 IEEE Com-
puter Society Symposium on Research in
Security and Privacy, pages 138{147, May
1989.

[34] Catherine Meadows. Representing par-
ital knowledge in an algebraic security
model. Proceedings of the Computer Secu-
rity Foundation Workshop III, pages 23{
31, June 1990.

32

Formal Methods for the Analysis of Authentication Protocols

[35] Catherine Meadows. A system for the
speci�cation and analysis of key manage-
ment protocols. Proceedings of the 1991
IEEE Computer Society Symposium on
Research in Security and Privacy, pages
182{195, May 1991.

[36] Catherine Meadows. Applying formal
methods to the analysis of a key manage-
ment protocol. Journal of Computer Se-
curity, 1(1):5{35, 1992.

[37] Jonathan K. Millen, Sidney C. Clark, and
Sheryl B. Freedman. The interrogator:
Protocol security analysis. IEEE Trans-
actions on Software Engineering, SE-
13(2):274{288, February 1987.

[38] Judy H. Moore. Protocol failures in
cryptosystems. Proceedings of the IEEE,
76(5):594{602, May 1988.

[39] Louise E. Moser. A logic of knowledge and
belief for reasoning about computer secu-
rity. Proceedings of the Computer Secu-
rity Foundation Workshop II, pages 57{63,
1989.

[40] R.M. Needham and M.D. Schroeder. Us-
ing encryption for authentication in large
networks of computers. Communications
of the ACM, 21(12):993{999, December
1978.

[41] R.M. Needham and M.D. Schroeder. Au-
thentication revisited. Operating Systems
Review, 21:7, January 1987.

[42] D. M. Nessett. A critique of the burrows,
abadi and needham logic. Operating Sys-
tem Review, 24(2):35{38, April 1990.

[43] D. Otway and O. Rees. E�cient and
timely mutual authentication. ACM Oper-
ating System Review, 21(1):8{10, January
1987.

[44] P. V. Rangan. An axiomatic basis of turst
in distrbiuted systems. Proceedings of the
1988 Symposium on Security and Privacy,
pages 204{211, May 1988.

[45] P. Rety, C. Kirchner, H. Kirchner, and
P. Lescanne. Narrower: a new algorithm
for uni�cation and its application to logic

programming. Rewriting Techniques and
Applications, Lecture Notes in COmputer
Science, 202, 1985.

[46] A. D. Rubin and P. Honeyman. Long
running jobs in an authenticated environ-
ment. USENIX Security Conference IV,
pages 19{28, October 1993.

[47] M. Sato. Study of kripke-style models of
some modal logics by gentzen's sequential
method. Publications of the Research In-
stitute for Mathematical Sciences, 13(2),
1977.

[48] J. Scheid and S. Holtsberg. Ina Jo Speci-
�cation Language Reference Manual. Sys-
tems Development Group, Unisys Corpo-
ration, September 1988.

[49] Yoav Shoham and Yoram Moses. Be-
lief as defeasible knowledge. Proceedings
of the 11th International Joint Confer-
ence on Arti�cial Intelligence, pages 1168{
1173, August 1989.

[50] Deepinder P. Sidhu. Authentication proto-
cols for computer networks: I. Computer
Networks and ISDN Systems, 11:297{310,
1986.

[51] Einar Snekkenes. Authentication in open
systems. Proceedings of the IFIP WG 6.1
Tenth International Symposium on Pro-
tocol Speci�cation, Testing, and Veri�ca-
tion, pages 311{324, June 1990.

[52] Einar Snekkenes. Exploring the ban ap-
proach to protocol analysis. Proceedings of
the 1991 IEEE Computer Society Sympo-
sium on Research in Security and Privacy,
pages 171{181, May 1991.

[53] Einar Snekkenes. Roles in cryptographic
protocols. Proceedings of the IEEE Com-
puter Society Symposium on Security and
Privacy, pages 105{119, May 1992.

[54] J.G. Steiner, B.C. Neuman, and J.I.
Schiller. Kerberos: An authentication ser-
vice for open network systems. In Usenix
Conference Proceedings, pages 191{202,
Dallas, Texas, February 1988.

33

Rubin & Honeyman

[55] Paul Syverson. A logic for the analysis of
cryptographic protocols. Technical Report
9305, Naval Research Laboratory, Decem-
ber 19.

[56] Paul Syverson. Formal semantics for logics
of cryptographic protocols. Proceedings of
the Computer Security Foundation Work-
shop III, pages 32{41, June 1990.

[57] Paul Syverson. The use of logic in the anal-
ysis of cryptographic protocols. Proceed-
ings of the 1991 IEEE Computer Society
Symposium on Research in Security and
Privacy, pages 156{170, May 1991.

[58] Paul Syverson. Adding time to a logic of
authentication, 1993. to appear in ACM
Computer Conference, Wahsington.

[59] Paul Syverson. On a key distribution pro-
tocol of Newman and Stubblebine. Sub-
mitted to Operating System Review, 1993.

[60] Paul Syverson and Catherine Meadows.
A logical language for specifying crypto-
graphic protocol requirements. Proceed-
ings of the 1993 IEEE Computer Society
Symposium on Research in Security and
Privacy, pages 165{177, May 1993.

[61] Paul F. Syverson. Knowledge, belief, and
semantics in the analysis of cryptographic
protocols. Journal of Computer Security,
1:317{334, 1992.

[62] V. Varadharajan and S. Black. Formal
speci�cation of a secure distributed sys-
tem. Proceedings of the 12th National
Computer Security Conference, pages 146{
171, October 1989.

[63] Vijay Varadharajan. Veri�cation of net-
work security protocols. Computers and
Security, 8(8):693{708, 1989.

[64] Vijay Varadharajan. Use of a formal de-
scription technique in the speci�cation of
authentication protocols. Computer Stan-
dards and Interfaces, 9:203{215, 1990.

[65] V. L. Voydock and S. T. Kent. Security
mechanisms in high{level network proto-
cols. Computing Surveys, 15(2):135{171,
June 1983.

[66] C. H. West. General technique for commu-
nications protocol validation. IBM Jour-
nal of Research and Development, 22:393{
404, 1978.

[67] Thomas Y.C. Woo and Siman S. Lam. A
semantic model for authentication proto-
cols. Proceedings of the 1993 IEEE Com-
puter Society Symposium on Research in
Security and Privacy, pages 178{194, May
1993.

34

