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ABSTRACT

Delayed write in a multilevel file system cache hierarchy offers a way to improve perfor-
mance in diverse client/server scenarios, such as integrating mass store into a distributed
file system or providing distributed file system access over low-speed links. Using file
system traces and cache simulations, we explore extensions and modifications to the trad-
itional client caching model employed in such file systems as AFS, Sprite, and DFS.

High cache hit rates at an intermediate cache server—a machine logically interposed
between clients and servers that provides cached file service to the clients—combined
with high client cache hit rates lend practicality to an integrated mass storage file system.
In such a system, magnetic tape or optical-based mass storage devices may be used as a
first-class data repository, fronted by disk and RAM caches to offer acceptable access
times to the large, but slow, mass storage system.

Similarly, a high cache hit rate is necessary for users accessing file systems via low-speed
links, where a delayed write intermediate caching server can mediate traffic to make
better use of available bandwidth. In an example taken from mobile computing, an inter-
mediate server might be used as a docking station at a user’s home. This arrangement
would be convenient for users of mobile computers who upload large amounts of data
generated while operating in disconnected mode. Simulations of delayed write caching
strategies are applicable to both the mass storage and low-speed link scenarios.
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1. Introduction

At the Center for Information Technology Integration (CITI), we are investigating potential scale- and
performance-enhancing extensions to the traditional client caching model employed in distributed file sys-
tems such as AFS [1, 2], Sprite [3], and DFS [4]. The core of our research to date deals with intermediate
cache servers: machines logically positioned between clients and servers, acting as both client and server in
the file system. As a client, an intermediate server caches files and directories on the local disk. As a
server, it satisfies client requests from the same local disk cache.

Intermediate servers reduce the request load of the upstream file servers by satisfying requests from client
machines. Simulations from previous work indicate that, in practice, an intermediate AFS server with a
2GB cache would cut read traffic to primary servers in half [5].

We are studying the organization and optimization of an integrated mass storage system based on a cache
hierarchy [6], similar to that used by Plan 9 from Bell Labs [7, 8]. The system consists of a file system
based on a mass store, e.g., magnetic tape or optical-based storage, attached to a file server with several
gigabytes of disk cache and possibly hundreds of megabytes of RAM cache. As in our earlier studies of
intermediate cache effectiveness, we simulate the proposed mass storage AFS system with traces collected
from running systems.

Home and mobile computers connected to the Internet via low-speed links, e.g. , modems, are increasingly
prevalent. AFS on such machines offers a consistent view of files, no matter what client machine is used,
but the write-through caching policy makes AFS over low-speed links less convenient. Preliminary simu-
lation results suggest that a delayed write policy would greatly increase performance in this situation.

In the remainder of this paper, we explore a delayed write scheme that automatically maintains AFS con-
sistency semantics unless automated consistency maintenance proves to be unnecessary, e.g. , if remote
usage patterns do not appear to justify the added cost. A delayed write policy reduces write latency, but at
the cost of more complex consistency semantics. While the latter cost is difficult to estimate, the potential
benefit can be measured through trace-driven simulation.

In the next section, we describe existing or proposed file system architectures that include intermediate file
service. The sections that follow describe the operation of the simulator and the trace data that we use in
our simulation. We then provide detailed analysis of the results of simulating delayed write in an inter-
mediate AFS environment in the context of an application to mass store systems. We then extend our
analysis to low-speed networks and conclude with a description of potential extensions to our work.

2. Related work

Much of the work on multilevel caches examines processor memory caches, which show great success in
improving CPU performance [9]. Multilevel caches in hardware typically have high hit rates. This and the
large difference in access times at the various levels of the cache hierarchy explain the success of mul-
tilevel caching in processor memories [10]. Multilevel caches in distributed file systems can exhibit both
of these properties, suggesting they may be useful for increasing file system performance.

Blaze and Alonso [11] investigate the effectiveness of a dynamic cache hierarchy in a distributed file sys-
tem environment. They conclude that their system could cut the load on primary servers in half. These
results, based on traces spanning approximately six days, assume whole-file caching at each level of the
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hierarchy with least-recently-used (LRU) cache replacement. Clients in this system can act as file servers
for other clients, potentially complicating security and archival issues.

Dahlin et al. investigate xFS, an experimental file system in which client machines handle many of the
tasks normally performed by file servers [12]. For example, all file system data is stored in client caches
and data transfers are performed directly between clients. Through the analysis of trace driven simulations,
they conclude that the xFS protocol greatly reduces server load compared to AFS. This system has poten-
tial complications similar to the work done by Blaze and Alonso, albeit a greater payoff.

Makaroff and Eager consider the performance of caching in systems where caching takes place at both
clients and servers [13]. They conclude that client caching degrades server cache effectiveness and, some-
what surprisingly, that the overall miss ratio for both cache levels may increase slightly when client cache
size is increased. These results are based on traces and cache sizes (maximum 2 MB) much smaller than
those we are using.

The Plan 9 system in use at Bell Labs has mass storage integrated into the file system. The file system
resides on an optical WORM jukebox fronted by a disk cache, in turn fronted by a RAM cache. Because
Plan 9’s WORM drives have much smaller seek times than do CITI’s tape devices, avoiding access to mass
storage is less important to Plan 9 researchers.

File migration to and from mass storage devices is also similar to the integrated mass storage system.
Miller and Katz evaluate such a file migration system using 24 months of activity traces [14]. Their con-
clusion on the importance of prefetching may be applicable to the CITI mass storage project.

Antonelli and Honeyman describe the integrated mass storage system under consideration at CITI [6]. This
system uses the mass store as a first-class data repository, with a disk-based file system and RAM serving
as a cache of the mass store. All storage other than the mass store is used exclusively for caching. They
focus on cache replacement policies appropriate for such an environment.

Huston and Honeyman, in their research into disconnected operation for AFS, implement a partially-
connected mode of file system operation [15], in which a client maintains a consistent cache but performs
write operations only when excess bandwidth is available. This has a very beneficial effect on system per-
formance as measured by conventional file system benchmarks, largely due to the performance improve-
ments consequential to delayed write. Although a client maintains a cache that is consistent with respect to
the server’s state, distributed consistency is sacrificed somewhat, in that the servers and other clients are
not immediately made aware of a partially connected client’s updates. Should strict consistency prove crit-
ically important, Srinivasan and Mogul’s work on Spritely NFS [16, 17] and Transarc’s DFS [4] provide
mechanisms for maintaining consistency while enjoying the performance advantages of delayed write.

3. The data

Our simulations use four sets of file system traces. The first data set was collected from all of the AFS
servers in the citi.umich.edu and umich.edu AFS cells over a 6-day period from 10:23:54 A.M.
on Thursday, April 23, 1992 to 12:57:48 P.M. on Wednesday, April 29, 1992†. Data collection took place
on the seven AFS servers described in Table 1.

The 6-day data contain all requests for data chunks from 327 clients. A chunk is a segment of an AFS file,
usually 64 KB in length. The data references 176,733 different files in 413,493 trace records.

The second data set, which includes a portion of the first, spans a substantially longer period: 24 days from
6:34:04 A.M. on Tuesday, April 14, 1992 to 7:26:14 A.M. on Friday, May 8, 1992. This data collection
took place on the file servers homer and marge and consists of requests from 486 clients. The data refer-
ences 320,725 distinct files in 1,151,321 trace records. During the 6-day trace interval, 75% of the AFS
requests were directed to homer and marge; it is likely that these servers were also predominant in the
24-day trace interval.

AFS clients exchange file data with the server via FETCHDATA and STOREDATA requests, whose functions
follow directly from their names. Each FETCHDATA and STOREDATA request contains a timestamp, the
hhhhhhhhhhhhhhhhhh
† These data, representing the longest contiguous period during which tracing was operating on all servers,
are actually a portion of a larger data set.
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name CPU OS disks

marge

homer
IBM ES/9000 Model 720 AIX/370 V1.1 IBM 3380

loki IBM ES/9000 Model 580 MVS/ESA V4.2 IBM 3380, 3390

babble IBM RT Model 125 AOS V4.3 BSD IBM 9332 SCSI

bastion

beachhead

toehold

IBM RS/6000 Model 320H AIX V3.1 IBM 400MB SCSI

Table 1. CITI AFS server environment. AFS server activity was recorded on the seven servers
shown. The 6-day data set consists of file system requests handled by all seven servers. The 24-
day data set contains only requests to homer and marge.

client’s network address, the file’s FID (unique identifier for a file), and the offset and length of the data
being requested. STOREDATA requests comprise 143,712 (35%) of the 6-day requests and 411,764 (36%)
of the 24-day requests.

The first two data sets consist of file system requests received by the AFS servers; requests that were
satisfied in the clients’ caches do not appear in the data sets. Simulation results based on these data sets are
accurate when simulated client cache sizes are greater than the actual client cache sizes; we return to this
point in Section 4.

The third data set was collected from 37 IBM RS/6000 AFS client machines at CITI over a 2-month period
from 3:07:00 A.M. on Wednesday, October 20, 1993 to 3:07:00 A.M. on Monday, December 20, 1993.
This data set contains all read, write, FETCHDATA, and STOREDATA requests issued by each client machine
for files in AFS. The 2-month data set contains 8,213,455 read requests, 3,125,928 write requests, 526,785
FETCHDATA requests, and 326,765 STOREDATA requests. The CITI RS/6000 AFS clients have many of the
most frequently used binaries on their local disks, such as files typically found in /bin. References to
these files do not appear in the traces.

For the 6-day and 24-day data sets, FETCHDATA and STOREDATA requests are the trace records of interest
for our simulations. For the 2-month data, though, we are interested in the read requests and STOREDATA

requests. STOREDATA requests are used instead of write requests because in AFS not all write requests are
passed to the servers. The servers become involved only when a STOREDATA request is issued following a
series of writes, e.g., when a file is closed. Read requests are used instead of FETCHDATA requests because
FETCHDATA requests appear in the client traces only when cache misses occur at a client; using read
requests allows simulations for all client cache sizes. This strategy also allows us to study alternative client
cache replacement policies, although that is beyond the scope of this paper.

The fourth data set was collected by the creators of the experimental file system, xFS [12], to evaluate their
system through simulation. Blaze’s rpcspy program [18] was used to monitor network activity and gen-
erate traces for NFS clients on four Ethernets. During data collection, 4% of all network activity was
dropped.

Because close system calls do not appear in NFS network traffic, Dahlin et al. used heuristics in a post-
processing step to infer them. The close calls are necessary to reflect the semantics of AFS, i.e. , store
on close. The trace records of interest for our simulations are the BlockREAD requests (equivalent to
read requests in the 2-month data) and the CloseWRITE and CloseRW requests (equivalent to STORE-

DATA requests in the 2-month data).

The portion of the xFS data used in this paper spans seven days from 1:01:06 A.M. on Saturday, September
18, 1993 to 1:07:15 A.M. on Saturday, September 25, 1993. It contains requests from 237 clients, refer-
ences to 127,215 unique FIDs, 4,250,065 BlockREAD requests, 6,864 CloseRW requests, 97,729
CloseWRITE requests, and 882,625 BlockWRITE requests.
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4. The simulator

To determine the feasibility of the integrated mass storage system under consideration at CITI, we use
trace-driven simulation to estimate how often file system users must wait for access to the slow‡ mass
storage media.

In earlier work, we have simulated a distributed file system with a two-level cache design [19]. In those
(simulated) environments, client machines are connected to an intermediate server which is in turn con-
nected to a principal file server, as shown in Figure 1. In the context of a mass storage system, the disk
system interposed between clients and the mass store has the same architectural role as an intermediate
server, while the mass store itself is architecturally identical to a primary server.

Clients

g g g

I.S.
(disk)

Server
(tape)

Figure 1. Topology of the intermediate server environment. File system requests from clients
are passed to the intermediate server (I.S.). If the request cannot be satisfied from the intermediate
server’s cache, the request is forwarded to the primary server. Write requests cause invalidation of
cached copies of the file on other clients.

The operation of the simulator is straightforward. Trace records are processed in the order in which they
were received by the AFS servers, or in the case of the 2-month data, in the order in which they were
issued. (All clocks are synchronized via NTP [20].) When a FETCHDATA request (read request for the 2-
month data) for a file from the server machine appears in the trace data, the simulator checks the local
cache on the requesting machine to see if the request can be satisfied there. If the requested chunk is found
in the local cache, the simulator records a ‘‘hit’’ for that client and processes the next trace record. Other-
wise, in the case of a FETCHDATA (read) request, the simulator records a ‘‘miss’’ for the client and checks
for the requested chunk in the intermediate server’s cache.

If the chunk is found in the intermediate server’s cache, the simulator records a hit and places the chunk
into the client’s cache. Otherwise, it records a miss and installs the chunk in both the intermediate server’s
cache and the client’s cache, and processes the next trace record.

STOREDATA requests cause the requested chunk to be cached at the client issuing the request and at the
intermediate server. STOREDATA requests are merely counted and are not assessed as hits or misses at this
point.

To evaluate client performance, we are interested in the fraction of requests for which clients need not wait
for access to the slow mass storage. So while the usual definition of hit rate counts writes as misses, in our
model writes are absorbed by the intermediate server; only read requests that miss both the client cache and
the intermediate server cache result in the client waiting for service by the mass store. Therefore the hit
rate metric we use is

read requests + write requests
read hits + write requestshhhhhhhhhhhhhhhhhhhhhhhhh

which we refer to as the write hit rate, in contrast to

read requests + write requests
read hitshhhhhhhhhhhhhhhhhhhhhhhhh

which is the usual definition of hit rate.
hhhhhhhhhhhhhhhh
‡ Mass storage is considered slow, when compared to conventional disk storage media, either because of
high access latencies, low data transfer rates, or both.
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Writes must eventually be propagated to the primary server. If a client attempts a write when the inter-
mediate server’s cache is full, the client may be forced to stall while the intermediate server performs cache
replacement, possibly involving writing data to the servers. Our simulations show that a sufficiently large
intermediate cache coupled with a policy for regularly flushing dirty blocks to the servers makes this
scenario unlikely. A simulation with the 24-day data, a 128,000-chunk intermediate server cache, and a
policy of flushing dirty chunks on a daily basis indicated that the clients need never wait for the intermedi-
ate server to write to the servers. This is also true for the other data sets.

All read and write requests are guaranteed to succeed at the server. Cache hits and misses are accounted
only for FETCHDATA (read) requests. The simulator reports the number of FETCHDATA (read) hits,
FETCHDATA (read) misses, and the number of STOREDATA requests seen by each simulated machine. The
cache replacement policy used at all levels is LRU. When a file is written by a client, the simulator invali-
dates that file in the cache of any other client holding a copy, mimicking AFS caching behavior as closely
as possible [21].

AFS clients typically cache 500 to 2,000 data chunks. Results from simulating client cache sizes greater
than those present in the trace collection environment are accurate because LRU is a stack algorithm [22],
which implies that those chunks present in a cache at any point in the simulation will be present at the same
point in a simulation with a larger cache.

We measure all cache sizes as a number of chunks, e.g., we simulate the operation of an intermediate
server with a 128,000 chunk cache. With a chunk size of 64 KB, a cache capable of holding 128,000
chunks requires approximately 8 GB of disk space in the worst case. However, it is rare for a file to break
into a whole number of chunks, e.g. , many files are much smaller than a chunk, so chunks are not fully util-
ized. In our simulations, we found chunk utilization to average about 33%, i.e., most of the time a chunk
capable of holding as much as 64 KB of file data holds 20 KB or less. To estimate the storage requirement
in bytes for a cache of n chunks, a simple rule of thumb is to multiply the number of chunks by 20 KB.
Thus, we would expect a 128,000 chunk cache to consume about 2.5 GB.

Metrics other than hit rate could be used, e.g. , the traces contain timestamps so we could simulate the
effect of an intermediate cache server on response time for client requests. We considered this metric, but
concluded that our results would be influenced by the performance of the machines appearing in the traces.
For example, an RS/6000 AFS server satisfies requests more quickly than an IBM RT AFS server,
adversely affecting the accuracy and generality of simulated response times. On the other hand, hit rate
metrics can be used to determine the response time of any system once the cost of hits and misses for that
system are determined.

Hit rates are independent of system performance, but performance is highly dependent on the cost of cache
hits and misses. For example, if a miss costs many tens of seconds as is common in a mass store environ-
ment, then all misses are deadly.

Baker et al. report that most files are quickly deleted or overwritten [23]; between 65% and 80% of files
are destroyed within 30 seconds of creation. Thus, simulations to determine the parameters of an efficient
delayed write policy in the integrated mass storage environment are of substantial interest.

5. Hit rate simulations

In environments where access to the intermediate server is substantially faster than to the primary servers,
requests that access the primary servers are assessed as misses at the intermediate server. In the mass
storage system we are modeling, once a write request is completed in the intermediate server’s cache, the
request is considered to be satisfied. If a write request does not require access to mass storage, it is counted
as a hit.

Some write requests can lead to a cache miss: when overwriting a partial chunk, the client first reads the
complete chunk. If this read request cannot be satisfied out of the cache, a miss is assessed. Conceivably,
the intermediate server could cache partially written chunks, eliminating the need to perform the read, but
this is tricky to coordinate and does not correspond to the actual operation of an AFS server, so we do not
assume this optimization. Read requests that miss both the client cache and the intermediate server’s cache
are counted as misses; all other requests can be handled without accessing mass storage, so they are
counted as cache hits.
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Our simulation experiments use the four data sets to calculate the write hit rate at the intermediate server.
We vary the client and intermediate server cache sizes and calculate the cache hit rate on the intermediate
server with these values. The results of the simulations, shown in Figure 2, indicate great potential for a
delayed write intermediate server in the role of shielding clients from lengthy delays in access to mass
storage, even when intermediate cache sizes are modest.
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Figure 2. Intermediate cache hit rate vs. client cache size. These figures show how client cache
size (measured in thousands of 64 KB chunks) affects hit rate at the intermediate server. The
several curves show the effect on write hit rate as intermediate cache size is varied; the labels on
the 24-day data figure give these sizes (in thousands of chunks).

In some cases the hit rate on the intermediate server grows as the client cache is increased. This is due to
the client cache handling a greater number of read requests, which increases the relative frequency of write
requests processed by the intermediate server. Because write requests are almost always cache hits at the
intermediate server, the hit rate increases with client cache size (up to a point).

The relative insensitivity of the intermediate write hit rate to the intermediate cache size for the 2-month
data is a consequence of the environment in which the data were collected. Unlike the other data sets, the
2-month data were collected from nearly identical machines used for software research and development
activities by a small number of users, resulting in smaller client cache working set sizes, thus fewer client
cache misses, and a concomitant decrease in the number of requests to the intermediate server.

Another way to view the effectiveness of the intermediate server is to fix the size of the client caches and
vary the size of the intermediate server’s cache. For these experiments, the client caches are fixed at 3,000
chunks, or, using our rule of thumb, about 60 MB. This is well within the range of typical values of client
cache sizes in AFS. Figure 3 shows the effectiveness of various sizes of intermediate server caches for the
four data sets.

Intermediate server effectiveness, as gauged by hit rate in an infinite intermediate server cache, is fairly
uniform for all but the 6-day data. In this latter case, cache warm-up time consumes a larger percentage of
the overall measurement period.

Beyond a 64,000 chunk cache, a little more than a gigabyte, adding more disk space offers diminishing
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Figure 3. Percentage of requests satisfied by the intermediate server vs. intermediate cache
size. These graphs show how intermediate cache size, measured in thousands of 64 KB chunks,
influences the effectiveness with which the intermediate server handles requests not satisfied by the
clients’ caches. All clients are assumed to have 3,000-chunk caches. The dashed line at 69.3%,
85.4%, 77.6%, and 81.5% shows the effectiveness of an infinite intermediate server cache in the 6-
day, 24-day, 2-month, and xFS data sets, respectively.

returns. With an intermediate cache of 128,000 chunks (or, about 2.5 GB), the hit rate is slightly less than
in an infinite cache.

5.1. Client requests to mass storage

The high hit rates at the intermediate server result in a substantial reduction in requests to mass storage.
Figure 4 shows in detail the effect of an intermediate server with 128,000 chunks (or, about 2.5 GB) on the
client requests of the 24-day data set. The dotted line shows the requests seen by the intermediate server,
while the solid line shows the requests passed to the mass store, i.e. , the cache misses at the intermediate
server. Significant peak-clipping occurs throughout this interval. Requests handled by the server are
reduced by 80.8%, from 953,661 to 183,324 over the 24-day period. Increasing the intermediate cache size
to 256,000 chunks (or, about 5 GB) decreases requests to mass storage by 85.1%.

Graphs based on the other data sets also show substantial peak-clipping, as in Figure 4, although the
request rates for the 2-month data set are lower, as it contains references from only 37 clients.

5.2. Discussion

The simulations described in this section indicate that intermediate servers may play an important role in
the design of large distributed file systems based on slow mass storage systems. Intermediate servers that
are capable of satisfying client write requests without incurring the penalty of accessing slow storage are
shielded from client write traffic; similarly clients are protected from the lengthy delays associated with
access to mass storage.

High intermediate cache hit rates coupled with high client cache hit rates make this application of delayed
write in a multilevel caching file system a practical and inexpensive way of combining the advantages of
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Figure 4. Slow storage request load reduction with the 24-day data. This graph shows the ef-
fect that an intermediate server with a 128,000-chunk cache has on the number of requests that
must be satisfied from mass storage. The dotted line shows the number of requests handled by the
mass storage system when the intermediate server is absent. The solid line shows the number of re-
quests the mass storage system must handle when the intermediate is present. Load reduction is
significant over most of the interval. Request counts are based on 1-hour intervals.

mass storage and distributed file systems. In the data sets we are working with, hit rates in the client caches
are in the 80−90% range [5]. Of the remaining requests, we have shown that 60−80% are satisfied without
incurring lengthy delays caused by the mass store. Our simulations indicate that clients will enjoy prompt
responses to their requests 99% of the time or more.

6. Application to low-speed networks

The write hit rate provides a measure of client performance in delayed write caching systems where there
is a significant penalty for performing the actual write operation to the primary file server. Another kind of
slow write performance occurs with the use of distributed file systems over low-speed lines, e.g., home and
mobile computers accessing AFS with SLIP or PPP over dialup links. Delayed write caching for such
machines may be particularly effective because write cost is so high. Data sharing is low in this
configuration [24], reducing or eliminating the need for automated consistency checks. An intermediate
server on the remote-side of the SLIP link can greatly improve performance by allowing client writes to
complete when data have been stored in the intermediate server’s cache.

An intermediate server in this scenario can be viewed as a ‘‘docking station’’ to which mobile home clients
quickly off-load data that were written during disconnected operation [25]. Later, the intermediate server
can convey write operations to the primary server, using overlapping RPC requests where possible.

In the case of home use, there are likely few or possibly only one machine accessing the distributed file
system. Thus, one machine may act as both an intermediate server—offering files out of its cache to other
local clients—and as a client.

A delayed write policy offers the ability to avoid writing data that are subsequently overwritten or deleted
(a frequent occurrence [23, 26]), which could substantially benefit low-speed network users. Writes that
cannot be avoided could be delayed until a time when traffic over the slow link is low. Delayed write
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caching may be useful as an option that can be turned on and off by hand. For example, if a user wishes to
build a kernel at home, delayed write could be enabled manually to defer storing object files until long after
the build, if at all.

A policy of periodically flushing written data may be sufficient for low-speed network use. The period
must be fairly large or the benefit of delayed write is lost. Deferring writes for 12- or 24-hour periods—
performing the writes during low-usage periods—could prove beneficial if synchronized with the backup
schedule of the primary servers. Of course, users must also be given the option of flushing manually. An
important advantage of these two approaches is that modifications to the AFS server are unnecessary.

In AFS, one client cannot see data written by another until the writer performs a STOREDATA operation,
usually when the file is closed, whereupon it is guaranteed that all clients will see the new data when the
file is opened. Delayed write subverts this guarantee. Where data sharing is high, protocol modifications
would be required to support both delayed write and the AFS consistency guarantee. We are considering a
scheme in which clients augment a delayed write policy by alerting the primary server when they have data
that would ordinarily have been written. Bandwidth is conserved by sending a short notification instead of
the actual data. Either the client or server could request that the actual data be sent at any point: the client
might flush dirty data to free up cache space, while the server could request data to enforce consistency.
This design is similar to and inspired by the Sprite [3], Spritely NFS [17], and DFS [4] protocols.

6.1. Simulations

When using the write hit rate to evaluate client performance in a mass storage system, writes are con-
sidered to be hits. However, in low-speed network scenarios, some writes must be performed at certain
times, e.g., writes necessary to maintain consistency, degrading client performance. Thus, the write hit rate
is overly optimistic for these cases.

We therefore look at how an intermediate server performing delayed write caching affects the number of
AFS requests that must be transferred over the low-speed link (other than at the periodic sync time). When
there is no intermediate caching, all read misses and stores must be performed immediately. When an
intermediate server is in use, we count the number of read misses, the number of dirty blocks flushed
(blocks that have been modified but not written back to the server), and blocks that must be written to
maintain file system consistency (dirty blocks referenced by other clients). Blocks written during the
(daily) synchronizing process in the delayed write scheme are not assessed—they are presumed to occur
when the client is quiescent, thus they do not adversely affect user performance.

For the simulations, we assume that each client machine in the 2-month data is actually an intermediate
server and client (or equivalently, that the clients perform delayed write caching). The first experiment
determines the effectiveness of a 3,000-chunk intermediate cache at reducing requests over the slow link
for each of the clients in the 2-month data.

The average reduction per intermediate server with 3,000-chunk (or, about 60 MB) intermediate caches is
54%. The overall reduction is 32%. When cache size is increased to 16,000 chunks (or, about 320 MB),
there is a 74% average reduction in the number of requests that must traverse the low-speed link at times
other than the sync period. The overall reduction with 16,000-chunk caches is 55%.

6.2. Drawbacks of simulation

None of our data sets reflect usage patterns over low-speed networks—all were collected from machines on
networks at least as fast as Ethernet. By basing simulations on this data, we are evaluating the ability of
users to perform the same tasks over low-speed links that they perform over Ethernet; this may not reflect
reality.

We considered gathering traces from low-speed network clients, but this presents several problems, e.g. ,
whether such traces reflect realistic usage patterns in the simulated environment. Adding a delayed write
caching intermediate server on the client side of a low-speed link would greatly increase user-perceived file
system performance. This might dramatically alter usage patterns, limiting the usefulness of the write-
through traces. Furthermore, most low-speed network users at CITI do little more with the file system over
dialup lines than read mail or perform other small tasks, which does not provide interesting grist for our
simulation mill.
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6.3. Discussion

Deferring write requests to low-usage periods can greatly benefit low-speed network users. Performing
writes across slow links hinders interactive use and other file system requests. We find that a large fraction
of requests—typically 50% to 75%—can be deferred until a daily sync is performed.

7. Conclusions and future work

Intermediate cache servers implementing a delayed write policy play a major role in the architecture of
CITI’s mass store-based file system. Intermediate servers are necessary due to the high seek times incurred
in accessing a mass store. Our simulations of delayed write intermediate servers suggest that they can
greatly reduce the number of requests that must wait for the mass store. We introduced the write hit rate as
a metric for evaluating delayed write caching where write traffic can be delayed until the system is other-
wise idle and suggest that this is the case with the mass store file system.

Delayed write intermediate cache servers may also prove useful in low-speed network environments. The
high value placed on bandwidth in such environments makes it important to control and reduce traffic over
the network. An intermediate cache server can delay file system writes for hours, giving transmission
priority to interactive traffic, for example. Delayed data that are subsequently deleted need never traverse
the slow link at all.

In the future, we would like to examine whether specialized caching strategies on the intermediate server
and the clients could be employed to improve performance. The use of LRU as the cache replacement pol-
icy for both clients and intermediate servers may be counterproductive, due to the overlap in cached data.
With the high cost of accessing slow mass storage, even small improvements in hit rate are important. We
plan to develop and evaluate caching algorithms tailored to the mass storage and low-speed network appli-
cations, and to study caching algorithms that have been suggested by others. Willick et al. [27] and
Korner [28] investigate alternatives to LRU caching for a distributed file system. We may perform simula-
tions using their suggested caching schemes in the context of multilevel caching. However, it is difficult to
guess the effectiveness of these caching policies for our use, because both papers use short trace durations
and small client caches. We may also explore caching algorithms based on those suggested by Maffeis
[29]. Specifically, variations of the File Length Algorithm may prove useful in environments where large
files might otherwise (under LRU for example) cause performance problems.
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