
CITI Technical Report 97−2

Provably Secure Videoconferencing

Peter Honeyman
Andy Adamson
Kevin Coffman

Janani Janakiraman
Rob Jerdonek

Jim Rees

At the Center for Information Technology Integration, we are experimenting with algo-
rithms and protocols for building secure applications. In our security testbed, we have
modified VIC, an off-the-shelf videoconferencing application, to support GSS API, a
generic security interface. We then layered these interfaces onto a smartcard-based key
distribution algorithm and a fast cipher. These components are accompanied by rigorous
mathematical proofs of security, and are accessed through narrowly-defined interfaces,
which lends confidence in the strength of the security of the system as a whole.

October 4, 1997

Center for Information Technology Integration
University of Michigan

519 West William Street
Ann Arbor, MI 48103-4943

Provably Secure Videoconferencing

Peter Honeyman
Andy Adamson
Kevin Coffman

Janani Janakiraman
Rob Jerdonek

Jim Rees

1. Introduction

Security and cryptography research and develop-
ment are advancing at an accelerating rate, yet the
payoff in secure distributed applications is not
being realized [1, 2]. This failure is due in part to
limitations in the network infrastructure, such as
secure naming and routing, which are rare in
today’s Internet except in isolated prototypes.

Progress is being made in securing the essential
fabric of the net [3, 4, 5], but even these efforts
may fail to meet the security needs of the most
stringent distributed applications. These must
rely on end-to-end methods to satisfy exceptional
security requirements. Security middleware —
protocols, algorithms, and interfaces — supports
the design and construction of secure distributed
applications and provides a context in which the
underpinnings of network security can be
explored and customized.

At the Center for Information Technology
Integration, we have built a security testbed that
supports prototyping and experimenting with
secure distributed applications by providing inter-
faces to secure communications facilities. The
testbed is rich in protocols, ciphers, and other
middleware for secure computing; provides for
rapid prototyping of secure applications by sup-
porting standards-based interfaces; and allows
extensive and flexible performance measurement.

In this paper, we describe a characteristic proto-
typing activity in the CITI testbed. Security has
many dimensions, and the CITI testbed addresses
only a few. Our middleware focus makes com-
munications security our principal concern. We
use provably secure building blocks — ciphers
and protocols that are accompanied by rigorous
mathematical scaffolding — and implement criti-
cal cryptographic functionality on secure
hardware.

2. Videoconferencing

With its extreme CPU and I/O performance
demands, videoconferencing is a distributed com-
munications service that provides plenty of
opportunity for performance measurement and
tuning. Consider the data requirements of mov-
ing color video images over a data network.
Working with full-motion (30 frames per second),
24-bit color, 320×240 images, we need to move
almost 7 MB/sec. (megabytes per second) from
the ‘‘camera server’’ to the ‘‘screen server’’
through computers and networks. This is impos-
sible in most of today’s Internet, so we must
compress the video stream. Then we need to
encrypt it. Secure videoconferencing has its per-
formance challenges.

We have had good experience with hardware
motion JPEG encoders running on expensive
workstations even though these encoders are
designed for video capture and storage, rather
than videoconferencing. We are drawn to the
commodity PC market to meet our computing
needs. We don’t find the fastest computers there,
we find the cheapest. These computers obey
Moore’s law, and are increasing in speed
exponentially at a constant price.

Cheap MPEG decoders for PCs and laptops are
common, thanks to a thriving audio/video play-
back market, but we are unable to use them.
Hardware MPEG encoders remain bulky and
expensive, and software MPEG encoding
demands more cycles than our PCs can provide.
We view this state of affairs as an instance of the
maxim ‘‘select two from {good, fast, cheap}.’’
We picked cheap computers, so our encoding is
either good or fast, but not both.

As a starting point for our secure videoconferenc-
ing prototype, we chose VIC [6], the popular and
sophisticated MBONE videoconferencing tool.

- 2 -

VIC implements user interface management in
Tcl/Tk [7], so it is flexible and easy to extend.
VIC offers optional DES encryption of the video
stream, but leaves key distribution to users. VIC
also includes a weak cipher that XORs the video
data stream with a constant key value. This is not
secure but provides a best-case performance base-
line.

DES is not the best choice for encrypting video
data. The algorithm is strong enough — it has
withstood concentrated attack for over 20 years
— but the 56-bit DES key space is fast succumb-
ing to exhaustive search by ever-faster proces-
sors. DES is also difficult to implement
efficiently in software.

3. Ciphers

We added two ciphers to VIC: RC4 (see Schneier
[8]), a simple stream cipher that is reputed to be
fast and secure, and VRA [9], Bellcore’s provably
secure stream cipher. VRA is not very widely
known, so we describe its operation here.

VRA uses a Goldreich-Levin [10] pseudo-random
number generator (PRNG) as an initial source of
random bits. Goldreich-Levin is expensive —
each output bit requires a call to a one-way per-
mutation function, which VRA emulates with
DES. To overcome this expense, VRA
‘‘stretches’’ Goldreich-Levin output bits into a
much longer sequence in two ways. The resulting
sequence of pseudo-random bits is then XORed
into the data stream.

The first stretching technique uses a long, wide
table filled with random bits. A subset of the
rows of the table is selected at random and com-
bined with XOR. By selecting in advance the
total number of rows n and the number of rows
selected at random k, the difficulty of recovering
the rows from their XOR sum can be made pro-

portional to a desired (k
n).

The key to effective stretching is to precompute a
wide table, so that a lot of bits are produced from
a few calls to Goldreich-Levin. In our applica-
tion, we use a table with 256 rows, 2,048 bits per
row. Initializing this table is expensive, but once
built a table can be used practically without limit
in multiple sessions.

This stretching technique exhibits good short-
term randomness, with a key strength of approxi-
mately log(n k), but, like any PRNG, admits a
birthday attack [11] that effectively halves the
key strength.

To compensate for these long-term correlations,
VRA uses a second stretching technique, based
on random walks through expander graphs.
Intuitively, this is a family of sparse graphs with
‘‘dense interconnectivity.’’ (A ‘sparse graph‘ is
one in which the ratio of edges to vertices is
upper bounded by a constant.) By dense inter-
connectivity we mean that for any division of the
vertices into equal-sized subsets, the ratio of the
number of edges between them to the number of
vertices is lower bounded by a constant.

The relevant property of expander graphs is that a
short random walk in an expander graph arrives
at a truly random node. Specifically, if we start at
any of the graph’s n vertices and take c log(n)
random steps for some constant c, then the final
vertex is very nearly equally likely among all the
vertices. A large value for n foils birthday
attacks.

Such a graph is enormous but VRA uses Gabber-
Galil graphs [12], which can be computed on-
the-fly as random steps are made. This obviates
construction of the entire graph, which is utterly
infeasible, and allows the procedure to maintain
minimal state, just the neighborhood it is
currently traversing. The graph we use has 21,024

nodes, each node having six neighbors.

To avoid making too many Goldreich-Levin calls,
each node on the path of the pseudo-random walk
is used as output, producing log(n) pseudo-
random bits at each step. This certainly exhibits
some short-term correlations, but any outputs
more than c log(n) steps apart for some constant
c are essentially independent.

The table and graph techniques produce two
streams of pseudo-random bits, one with good
short-term characteristics, the other with good
long-term ones. These bit streams are XORed
together, each masking the others weaknesses.
The resulting stream is the ultimate output of the
VRA PRNG.

VRA has essential cryptographic properties, is
based on concrete mathematical arguments, and
passes numerous tests of randomness, including
Knuth’s multidimensional tests and Marsaglia’s
Diehard battery of tests (see [9].) Furthermore,
and of utmost importance for our videoconferenc-
ing application, VRA is plenty fast.

VRA is a keyed PRNG. The key is the set of bits
used to initialize Goldreich-Levin. This can be of
any size.

- 3 -

4. Session keys

Communicating peers establish a security context
by agreeing on a shared secret, or key , which they
use to authenticate and secure subsequent com-
munications. If all principals in a security
domain must exchange keys in advance, then the
number of keys that must be set up grows qua-
dratically with the number of principals. This
does not scale well. The additional requirement
that all principals manage a private database of
keys makes even small scale deployment uncom-
fortable.

Needham and Schroeder address these complexi-
ties by establishing one long-term key for each of
the principals in the security domain and sharing
the long-term keys with a trusted third party
(T3P) [13]. This has two distinct advantages.
First, the number of long-term keys in the system
grows linearly with the number of principals, not
quadratically. Second, each principal is responsi-
ble for only the key that it shares with the T3P,
rather than keys for all of the other principals in
the security domain.

While this reduces the obligations and bookkeep-
ing for principals, it does not eliminate their
responsibilities altogether, nor shield them from
harm in the event that control over a long-term
key is lost. To assist principals in the secure
management of their keys, researchers at Bellcore
devised an innovative key distribution protocol
that exploits the tamper-resistant properties of
smartcards to provide a convenient and secure
repository for cryptographic keys.

4.1. Smartcards

In the systems we use daily, we find the greatest
security threat to be the reliance on passwords
selected by users. Users are required to know and
remember their passwords, so passwords are
necessarily of limited length and are frequently
quite easy to guess [14, 15]. This is especially
troublesome in an environment like ours, which
relies heavily on Kerberos IV [16] for basic secu-
rity services; regrettably, Kerberos IV admits an
offline dictionary attack [17].

A smartcard[18] is a plastic card the size and
thickness of an ordinary credit card (0.76 mm)
with electrical contacts and an embedded
microprocessor. Putting a computer in
everyone’s hip pocket creates an infrastructure
that enables a huge range of applications, such as
vending, personal telecommunications, medical
information, home banking and ATM, satellite

TV, FAX scrambling, etc. The development of
smartcard infrastructure provides a context for
forward-looking projects such as Xerox PARC’s
research and development in ‘‘Ubiquitous Com-
puting’’ [19].

Smartcards are prevalent in Europe and some
other parts of the world, but are still considered
an emerging technology in North America. Euro-
pean manufacturers such as SGS-Thomson, Sie-
mens, Gemplus, and Schlumberger are among the
most prominent, but Motorola and Texas Instru-
ments are also major players.

The introduction of phonecards over a decade ago
paved the way for broad acceptance of smartcards
in Europe. European banking and merchant
industries have also embraced smartcards, using
them in applications such as vending, loyalty
card, electronic purses, pay-TV, and
identification. By the end of 1997, over a billion
smartcards, mostly simple phonecards, were in
use worldwide, Over 50 million of them
advanced, microprocessor-equipped cards [20].

Standardization of smartcard physical characteris-
tics and access protocols plays a vital role in
applicability and acceptance [18]. The Europay-
MasterCard-Visa and Mondex specifications for
smartcard payment systems make it likely that
smartcards will continue to play an increasing
role in European private and public sectors. The
engagement of non-European partners paves the
way for global acceptance of smartcards.

The University of Michigan, by far the largest
and most influential employer in Ann Arbor, has
adopted a smartcard as its identification card for
faculty, staff, and students. The so-called
‘‘MCard’’ is also used for banking, small pur-
chases, and photo ID. Smartcards are truly
multi-function.

A typical smartcard contains an 8-bit micropro-
cessor clocked at 5 Mhz with 8K of EEPROM
and a few hundred bytes of RAM, communicating
at 9.6 Kbps. Fast DES encryption has long been
available [21], and arithmetic co-processors are
beginning to be used to provide for subsecond
public key operations [22, 23].

Most smartcards have advanced security features
to protect the contents of memory from being
read or altered by unauthorized users and to pro-
tect against improper execution of embedded
software. These controls typically include design
circuitry to ensure that the embedded software
either executes correctly or stops in a safe condi-
tion. Critical parameters such as supply voltage,

- 4 -

clock frequency, and other critical signals are
continuously monitored and filtered to avoid
faulty execution [24].

Physical constraints limit the applicability of
smartcards in settings that require high-speed
computing or communication. But unique secu-
rity and mobility characteristics make them an
attractive foundation for deploying forward-
looking, secure distributed applications. For
example, smartcards may play the vital role of a
trusted computing base in applications that
employ downloaded executable content [25],
such as Java applets.

In our environment, smartcards are especially
attractive, as they offer the opportunity to replace
short, easy-to-guess passwords stored in users’
heads with long, randomly generated bit strings
stored on secure, convenient hardware.

4.2. Shoup-Rubin protocol

Before videoconferencers can use VRA or any
other cipher for communications privacy, they
need to agree on a session key. Bellcore’s
Shoup-Rubin protocol [26] is a provably secure,
smartcard-based key distribution protocol that
runs among two communicating videoconferenc-
ers and a T3P. Following Schneier, we call these
ALICE, BOB, and TRENT [8].

Shoup-Rubin stores long-term keys on smartcards
and performs all cryptography necessary for ses-
sion key distribution on the smartcards. ALICE
never knows her long-term key; it is known only
to TRENT and to ALICE’s smartcard, where it is
used as a key in cryptographic computations.

The session keys distributed with Shoup-Rubin
are not stored on secure hardware, and may be
vulnerable to compromise; good practice dictates
frequent rekeying. The role of the Shoup-Rubin
protocol is to provide fast and secure session key
distribution to support frequent rekeying.

The details of the Shoup-Rubin protocol are fairly
intricate, in part to satisfy the requirements of an
underlying complexity-theoretic proof framework
[27]. This inconvenience is balanced by the abil-
ity to prove powerful security properties of the
protocol. Coupling this with the hardware basis
of long-term key storage lends confidence in the
overall security of the session key distribution
mechanism.

Shoup-Rubin builds on the Leighton-Micali key
distribution protocol [28], a simple, T3P-based
key distribution protocol. Leighton-Micali uses a

construct known as a pair key to establish a
shared secret between communicating parties.

Let A and B denote unambiguous identifiers for
ALICE and BOB, and let KA and KB be their long
term keys, and let {M}K denote message M
encrypted with key K. ALICE and BOB’s pair
key is defined

ΠAB = {A}KB
⊕ {B}KA

TRENT calculates pair keys on demand; that is
TRENT’s entire role. Pair keys can be communi-
cated in the clear; a pair key reveals nothing
about the long-term keys used in its calculation.

With pair key ΠAB in hand, ALICE computes
{B}KA

. Combining this with the pair key yields
κ = {A}KB

. BOB can compute κ directly, so once
ALICE has a pair key in hand, she and BOB can
communicate privately using key κ.

In Shoup-Rubin, κ is computed on ALICE’s and
BOB’s smartcards. ALICE and BOB agree on a
session key using κ to provide for secure com-
munication.

The Shoup-Rubin protocol is detailed in the
Appendix. Shoup and Rubin use Bellare and
Rogaway’s innovative complexity theoretic tech-
niques [27] to prove that their key distribution
algorithm does not disclose the session key to an
extremely powerful adversary.

4.3. Shoup-Rubin implementation

The Shoup-Rubin protocol is a distributed com-
putation involving five processing elements:
ALICE’s computer, her smartcard, BOB’s com-
puter, his smartcard, and TRENT. TRENT has
access to long-term keys for all the principals in
the system.

Working with Personal Cipher Card Corp., a
smartcard vendor in Lakeland, FL, CITI imple-
mented the smartcard functionality of Shoup-
Rubin on the SGS-Thomson ST16612 card,
which contains a MC68HC05 microprocessor
clocked at 3.58 Mhz containing 2 KB EEPROM,
6 KB ROM, and 160 bytes RAM. The card sup-
ports DES encryption, so that is what we use.
Each smartcard call takes about 300 msec. The
Shoup-Rubin implementation is about about 500
bytes of code, stored in EEPROM.

The total time for key distribution, from the
moment a smartcard is inserted into a reader to
the time when keys are available is about 10
seconds. This lengthy delay is in part due to
deficiencies in our Windows95 smartcard drivers,

- 5 -

but also reflects the message overhead of navigat-
ing the ISO 7816 file system on the card. Our
goal is one or two seconds on average.

5. Interfaces

To make the encryption and key exchange algo-
rithms available for use in VIC and other applica-
tions, we built a Generic Security Service (GSS-
API) [29] interface encompassing the four ciphers
(DES, XOR, RC4, and VRA) and Shoup-Rubin.
As the name implies, GSS-API provides security
services to callers in a generic fashion, allowing
applications to be written to a common portable
interface. GSS-API may be implemented with a
range of underlying mechanisms.

The GSS-API has four categories of interfaces:
credential management, security context, per-
message operations, and support. Shoup-Rubin
keeps its credentials on smartcards, so our inter-
face does not implement credential management.
A handful of support calls were implemented to
handle buffer management and naming issues.
Security context establishment and per-message
operations constitute the bulk of our GSS API
implementation.

We implemented GSS_Init_sec_context
and GSS_Accept_sec_context. The secu-
rity context interface provides key exchange and
establishment of a security context, in this case
the session key, between two entities. The calling
applications use the GSS API without knowledge
of the underlying mechanisms being used. They
call GSS_Init_sec_context or
GSS_Accept_sec_context and pass opaque
tokens back and forth until the status values
returned indicate that the processing is complete.

We implemented the GSS_Wrap and
GSS_Unwrap per-message calls. These routines
provide for data confidentiality by encrypting the
input data. We use the quality of protection, or
QOP, parameter to select among encryption
methods.

We extended VIC to make GSS API calls and
augmented its Tcl/Tk interface to allow online
cipher selection and performanced data capture.
This lets us demonstrate and measure how the
choice of ciphers affects the quality of the
delivered video.

Implementation of TRENT presents some chal-
lenges. On the one hand, TRENT must be online
and available at all times. On the other hand,
TRENT is entrusted with all of the long-term keys
in the system. In combination, these

requirements put TRENT in a highly vulnerable
position. We use smartcards to provide for these
seemingly contradictory requirements.

TRENT’s function is directory service, so we use
an off-the-shelf Lightweight Directory Access
Protocol (LDAP) [30] server to provide a stan-
dard interface for pair key requests and responses.
To minimize the security requirements of the
LDAP server, we store encrypted long-term keys
on the server, and use an attached smartcard for
the actual pair key computation. With this
approach, the pair-key service can be hosted on a
server with security requirements comparable to
an email or web server, instead of the extremely
stringent security requirements that would be
anticipated for a network-attached server holding
such vulnerable assets as long-term keys.

6. Testbed Assessment

The CITI security testbed, consisting of a collec-
tion of ciphers and key distribution methods tied
together with Internet-standard interfaces, sup-
ports the development of secure applications.
The testbed is easy to extend, and we anticipate
adding building blocks.

Our extensions to VIC provide a videoconferenc-
ing tool with standard security interfaces, prov-
ably secure key distribution, and provably secure
end-to-end encryption. Our ability to build,
demonstrate, and instrument a prototype imple-
mentation validates the usefulness of our security
testbed. The tool itself remains very portable and
efficient.

Performance measurements were taken from
166 Mhz Pentium systems running Windows ’95.
The bottlenecks are video encoding and decoding,
and Wintel data movement. In these experiments,
the presence or absence of encryption makes no
difference in throughput. (Sigh.) Nonetheless,
we are able to measure the time spent in the
encryption functions, and thus can estimate the
throughput we might expect once we solve our
video bottleneck. We are encouraged to see VRA
outpacing RC4, and are continuing to tune VRA
for Wintel.

Cipher Throughput

XOR 25 MB/sec

VRA 4 MB/sec

RC4 2 MB/sec

DES 0.5 MB/sec

- 6 -

7. Future work

In our current and future work, we are extending
the security boundaries of VIC to include
encrypted audio communications. We are also
addressing multiparty communications and the
attendant problems in secure and reliable group
communications. Reliable multicast offers the
potential for efficient key distribution to members
of a secure session and can play a central role in
secure multiparty communications.

Shoup-Rubin needs a mechanism for revocation
of long-term keys. If ALICE’s long-term key is
compromised, BOB may be tricked into establish-
ing a session with an intruder masquerading as
ALICE. This comes about because BOB never
communicates with TRENT. We are augmenting
Shoup-Rubin to preserve security even when
smartcards are compromised.

This is an exciting time to be working with secure
tokens: new companies and products are making
custom programming of secure tokens easy and
fast. We are testing Schlumberger’s JavaCard
and are implementing and augmenting Shoup-
Rubin on that platform. Advances such as this
pave the way for us to be able to apply the
hardware security inherent in secure tokens in a
rapid and direct way.

Acknowledgements

S. Rajagopalan, Bill Aiello, and Scott Dexter pro-
vided many illuminations. Piet Maclaine Pont of
IBM Netherlands suggested the solution to our
TRENT dilemma.

Personal Cipher Card Corp. manufactured our
Shoup-Rubin smartcards. We thank Kip Wheeler
and PC3 for working so closely with us.

This work was partially supported by a grant from
Bellcore.

References

1. Matt Blaze, ‘‘If cryptography is so great, why
isn’t it being used more?,’’ Invited talk,
USENIX Conference, Anaheim (January 8,
1997).

2. Bruce Schneier, Why cryptography is harder
than it looks, http://www.
counterpane.com/whycrypto.html,
December 23, 1996.

3. John Gilmore, Secure Wide Area Network
Project, http://www.cygnus.com/
˜gnu/swan.html, March 20, 1997.

4. D. Eastlake and C. Kaufman, ‘‘Domain Name
System Security Extensions,’’ RFC 2065,
USC/Information Sciences Institute (January
3, 1997).

5. R. Atkinson, ‘‘Security Architecture for the
Internet Protocol,’’ RFC 1825,
USC/Information Sciences Institute (August
09, 1995).

6. S. McCanne and V. Jacobson, ‘‘VIC: a flexi-
ble framework for packet video,’’ in ACM 3rd
Ann. Conf. on Multimedia, San Francisco
(November, 1995).

7. J.K. Ousterhout, ‘‘An X11 toolkit based on
the Tcl language,’’ in Proc. 1991 Winter
USENIX Conf., Nashville (January, 1991).

8. B. Schneier, Applied Cryptography, Second
Ed., John Wiley & Sons, New York (1996).

9. W. Aiello, S. Rajagopalan, and R. Venkate-
san, ‘‘Practical and provable pseudorandom
generators,’’ pp. 1−8 in 5th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA).

10. O. Goldreich and L.A. Levin, ‘‘Hard core
predicates for any one-way function,’’ pp.
25−32 in 21st Ann. ACM Symp. on Theory of
Computing (1989).

11. D.R. Stinson, Cryptography: theory and
practice, CRC Press, Inc. (1995).

12. Ofer Gabber and Zvi Galil, ‘‘Explicit Con-
structions of Linear-Sized Superconcentra-
tors,’’ JCSS 22(3), pp. 407−420 (1981).

13. R.M. Needham and M.D. Schroeder, ‘‘Using
Encryption for Authentication in Large Net-
works of Computers,’’ Communications of the
ACM 21(12) (December, 1978).

14. Robert T. Morris and Ken Thompson, ‘‘Pass-
word Security: A Case History,’’ pp. 594−597
in CACM (November, 1979).

15. D.V. Klein, ‘‘Foiling the Cracker: A Survey
of, and Improvements to, Password Secu-
rity,’’ pp. 5−14 in Proc. UNIX Security
Workshop II, USENIX Assoc., Portland
(August, 1990).

16. J.G. Steiner, C. Neuman, and J.I. Schiller,
‘‘Kerberos: An Authentication Service for
Open Network Systems,’’ pp. 191−202 in
Winter 1988 USENIX Conference Proceed-
ings, Dallas (February, 1988).

17. Steven M. Bellovin and Michael Merritt,
‘‘Limitations of the Kerberos Authentication
System,’’ pp. 253−267 in Proc. of Winter
USENIX Conf., Dallas (January, 1991).

- 7 -

18. International Organization for Standardiza-
tion, ‘‘Identification Cards — Integrated
Circuit(s) Cards with Contacts,’’ ISO 7816.

19. Mark Weiser, ‘‘The Computer for the
Twenty-First Century,’’ Scientific American,
pp. 94−110 (September, 1991).

20. Diogo Teixeira, Cynthia Weaver, and James
Beams, ‘‘Smart Cards in Banking: The Future
of Money?,’’ 1997 Financial Services Tech-
nology Conference, The Tower Group.
http://www.towergroup.com/
97conf/97conf.htm

21. Louis Claude Guillou, Michel Ugon, and
Jean-Jacques Quisquater, ‘‘The Smart Card:
A Standardized Security Device Dedicated to
Public Cryptology,’’ pp. 561−613 in Contem-
porary Cryptology: The Science of Informa-
tion Integrity, ed. Gustavus J. Simmons, IEEE
Press (1992).

22. David Naccache and David M’Ra
..
ihi, ‘‘Arith-

metic Co-processors for Public Key Cryptog-
raphy: The State of the Art,’’ pp. 39−58 in
Proc. of CARDIS Smart Card Research and
Advanced Applications Conf., ed. Pieter H.
Hartel, Pierre Pardinas, and Jean-Jacques
Quisquater, Stichting Mathematisch Centrum
(CWI), Amsterdam (Sept. 1996).

23. Ronald Ferreira, Ralf Malzahn, Peter Mar-
issen, Jean-Jacques Quisquater, and Thomas
Wille, ‘‘FAME: A 3rd Generation Coproces-
sor for Optimising Public Key Cryptosystems
in Smart Card Applications,’’ pp. 59−72 in
Proc. of CARDIS Smart Card Research and
Advanced Applications Conf., ed. Pieter H.
Hartel, Pierre Pardinas, and Jean-Jacques
Quisquater, Stichting Mathematisch Centrum
(CWI), Amsterdam (Sept. 1996).

24. Antony Watts, ‘‘Smartcards and Security —
or How to Save $5 Billion a Year!,’’ pp.
102−109 in Smart Card Technology Interna-
tional, Chantry Hurst Books, London (1996).

25. TRENT Jaeger, Flexible Control of Down-
loaded Executable Content, PhD Thesis,
University of Michigan (1996).

26. V. Shoup and A.D. Rubin, ‘‘Session Key
Distribution Using Smart Cards,’’ in Proc. of
Eurocrypt ’96 (May, 1996).

27. M. Bellare and P. Rogaway, ‘‘Provably
Secure Session Key Distribution: The Three
Party Case,’’ in Proc. ACM 27th Ann. Symp.
on the Theory of Computing (1995).

28. T. Leighton and S. Micali, ‘‘Secret-Key

Agreement Without Public-Key Cryptogra-
phy,’’ pp. 456−479 in Proc. of Crypto ’93,
Santa Barbara (1993).

29. J. Linn, ‘‘Generic Security Service Applica-
tion Program Interface, Version 2,’’ RFC
2078, USC/Information Sciences Institute
(January, 10, 1997).

30. W. Yeong, T. Howes, and S. Kille, ‘‘Light-
weight Directory Access Protocol,’’ RFC
1777, USC/Information Sciences Institute
(March 1995).

Appendix: Shoup-Rubin details

In this section we give a detailed description of
the Shoup-Rubin session key distribution proto-
col. Initially, ALICE and BOB have smartcards
initialized with a secret card key and a long-term
key shared with TRENT.

The following table defines the terms used in the
Shoup-Rubin smartcard-based session key distri-
bution protocol. Encryption of message M with
key K is denoted {M}K. Integer operands are
concatenated to other protocol terms with the
‘‘dot’’ operator to satisfy requirements of the
Bellare-Rogaway proof framework.

Term Meaning

A, B Unique identifiers

KA, KB Long-term keys

KAC, KBC Secret card keys

r, s Nonces

ΠAB = {A.0}KB
⊕ {B.1}KA

Pair key

α = {ΠAB
.B.2}KA

Verifies ΠAB

β = {r.s.1}κ Verifies r and s

γ = {r.1.1}KAC
Verifies r

δ = {s.0.1}κ Verifies s

κ = {A.0}KB
See discussion

σ = {s.0.0}κ Session key

The influence of the Leighton-Micali key distri-
bution protocol is evident in the use of ALICE and
BOB’s pair key, defined as

ΠAB = {A}KB
⊕ {B}KA

The pair key allows ALICE and BOB to share a
secret without prior agreement.

We now detail the steps of Shoup-Rubin.

- 8 -

From To Message Meaning

ALICE TRENT A, B ALICE wishes to initiate a
session with BOB.

TRENT ALICE ΠAB, α ΠAB is ALICE and BOB’s
pair key. α is a verifier for
ΠAB.

ALICE asks TRENT for the ALICE/BOB pair key.
TRENT also returns a verifier, which ALICE’s
card uses to prevent masquerading.

From To Message Meaning

ALICE CardA — ALICE requests a nonce to
verify subsequent commun-
ication with BOB.

CardA ALICE r, γ r is a nonce, γ is a verifier
for r.

Card operation 1

ALICE initiates the protocol with BOB by request-
ing a nonce from her smartcard. ALICE retains
the verifier for later use.

From To Message Meaning

ALICE BOB A, r BOB will use r to assure
ALICE of his correct
behavior.

By sending a nonce to BOB, ALICE requests
establishment of a fresh session key.

From To Message Meaning

BOB CardB A, r BOB instructs his smartcard
to construct a session key,
and provides ALICE’s
nonce for her subsequent
verification.

CardB BOB s, σ, β,
δ

s is a nonce used to con-
struct the session key. σ is
the session key. β is
ALICE’s verifier for r and s.
δ is BOB’s verifier for s.

Card operation 2

BOB sends ALICE’s identity and her nonce to his
smartcard. BOB’s card generates a nonce and,
from this, a session key. BOB’s card also gen-
erates two verifiers; one is used by ALICE’s card
to verify both nonces, the other is used by BOB to
verify ALICE’s subsequent acknowledgement.
BOB retains the session key and his verifier.

From To Message Meaning

BOB ALICE s, β ALICE needs s to construct
the session key, and β to
verify r and s. BOB retains
σ, the session key, and δ, a
verifier for s.

BOB forwards his nonce, from which ALICE’s
card constructs the session key.

From To Message Meaning

ALICE CardA B, r, s,
ΠAB, α,
β, γ

Verify: ΠAB with α, r with
γ, and BOB’s use of r and s
with β. Use ΠAB and s to
construct the session key.

CardA ALICE σ, δ σ is the session key. δ is
sent to BOB to confirm
ALICE’s verification of s.

Card operation 3

ALICE sends everything she has to her smartcard:
BOB’s identity, the pair key and its verifier, her
nonce and its verifier, and BOB’s nonce and its
verifier. ALICE’s card validates all the verifiers.
If everything checks out, ALICE’s smartcard con-
structs the session key from BOB’s nonce and
uploads it to ALICE along with a verifier to assure
BOB that ALICE is behaving properly.

From To Message Meaning

ALICE BOB δ Confirm

ALICE sends the verifier to BOB. BOB compares
it to his retained verifier.

