
The Packet Vault: Secure Storage of Network Data

C.J. Antonelli
M. Undy

P. Honeyman

Center for Information Technology Integration
The University of Michigan

Ann Arbor
{cja,mundy,honey}@citi.umich.edu

Abstract
This paper describes the packet vault, a cryptographi-
cally secured archiver of network packet data. The
vault captures network packets, encrypts them, and
writes them to long-term CD-ROM storage for later
analysis and for evidentiary purposes. The crypto-
graphic organization of the vault permits selected
traffic to be made available without exposing other
traffic.

1. Introduction
The goal of the packet vault project at the Center for
Information Technology Integration is to provide cryp-
tographically secured long-term storage of network
packets for later use as input data for intrusion detec-
tion algorithms or for possible evidentiary purposes.

Creating a complete, permanent record of all
activity on a subnet addresses security threats in several
ways. First, intrusion detection algorithms can be exe-
cuted using the record as the input packet source.
Detectors can be run over the same record with dif-
ferent parameter settings, outputs of different detectors
can be compared, and new detectors can be created and
evaluated against the record. Conducting such experi-
ments requires a complete record of packets.

Second, in response to an intrusion in progress, the
packet vault can be attached to a subnet under attack;
the packets it stores may be used to determine quickly
the source and nature of the intrusion, and thus help
shape the response. In addition, the vault can be per-
manently connected to a suspect subnet, allowing the
record to be examined periodically.

Finally, a properly constructed corpus of packet
data may serve as evidence in legal proceedings.

In the remainder of this paper, we describe the

goals of the packet vault, then discuss the hardware,
software, and cryptographic organization of the vault.
We then describe our experiences, discuss some issues
— including legal issues and the strength of DES — in
operating the vault, and conclude with a discussion of
future work.

2. Goals
The architecture of the packet vault reflects the follow-
ing goals:

g Commodity. We want to build a packet vault from
commodity hardware and software, notwithstanding
the attraction of expensive machines with fast buses
and I/O devices. With a vault built from cheap
parts in hand, we feel we can trade money for speed
by buying faster parts (in a year).

g Completeness. To create a complete record, it is
vital to capture and store every packet. We suspect
that an adversary can exploit any form of packet
triage; the only way to defend against all such
attacks is to build a vault that stores packets at the
maximum rate the network delivers them.

g Permanency. We decided from the outset that our
storage medium would be CD-ROM, because of
consistently bad long-term experiences with data
storage on magnetic tapes, and because we wanted
to learn a bit about CD-ROM writers. We are not
concerned with the relatively low data rates of the
writers, as we can depend on them to improve, and
in any case we can use multiple writers.

g Security. Should the CD-ROMs containing net-
work traffic become available for unsupervised
inspection, either intentionally or by larceny, it is
critical that the data stored on them be protected
with strong cryptography. Accordingly, our design
goals acknowledge the possibility of loss of

physical control by assuming the worst, anticipating
potential publication of the encrypted data. It is
also vital that the data be organized in such a way
that some subsets of the traffic can be revealed
without exposing others. Ideally, we would like to
publish keys that unlock certain data on a given
CD-ROM, without the possession of those keys
exposing other data on it.

We observe that our goals of commodity and com-
pleteness are in tension, particularly at network speeds
above 10 Mbps. Our goal is to construct a vault that
can store all packets on a typically loaded 10 Mbps Eth-
ernet network, and to depend on faster hardware to
improve the rate at which packets can be acquired.

3. Architecture
A critical question is whether a single commodity
machine can accept packets from the network, encrypt
them, and write them to CD-ROM without becoming
overloaded. Early experiences with bursty Ethernets
coupled with the real-time requirements of CD-ROM
recorders† convinced us that two machines would be
necessary.

The packet vault hardware is composed of two 133
MHz PCI-bus Pentium machines interconnected via a
private 100 Mbps Ethernet. One machine (the
"listener") is connected to the network being monitored
and is used to capture and encrypt packets, which are
then sent over the private Ethernet. The listener never
stores packets on magnetic disk.

The other machine (the "writer") receives encrypted
packets and assembles them on magnetic disk for sub-
sequent writing to CD-ROM. The two magnetic disks
on the writer are attached to a common SCSI bus. A
second SCSI bus dedicated to the CD-ROM recorder
(CD-R) prevents bus contention. Figure 1 shows the
hardware architecture of the packet vault.

We chose UNIX for both listener and writer for its
familiarity and flexibility. OpenBSD was chosen for
the listener for its kernel packet filtering support; early
availability of CD-R drivers dictated the choice of
Linux for the writer.

We use BPF [1] on the listener to capture all pack-
ets seen on the 10 Mbps network being monitored and
write them to an accumulator file in a memory file sys-
tem (MFS [2]). We modified the BPF code to pass
hhhhhhhhhhhhhhhhhh
† Our CD-ROM recorder, like all early commodity record-
ers, possesses a small (512 KB) data buffer and thus requires
the attached host to maintain a constant data rate during the
entire time the CD-ROM is being written; failure to maintain
the required rate ruins the CD-ROM.

Listener

Writer

Disk Disk

CD-R

Figure 1

packets directly from the kernel network buffers to
MFS, obviating two copies between user and kernel
space. A listener process monitors the size of the accu-
mulator file and renames it when it reaches 4 MB in
size or after 1 minute has elapsed, which keeps the size
of the MFS packet files manageable. The names of the
packet files reflect the time of day they were created.

Another process on the listener polls the MFS for
new packet files, encrypts their contents, and uses rcp
to copy the files over the private 100 Mbps link to the
writer. Unencrypted data are stored only in the MFS,
so in the event of a system failure no unencrypted data
remain.‡

When enough packet files have accumulated on the
writer to fill a CD-ROM, a background process is
spawned on the writer. The writer process generates an
ISO-9660-compliant image on magnetic disk contain-
ing the packet files and the cryptographic material
necessary to permit later recovery of the packet data.
The image is written, then purged from magnetic disk.
A double-buffering scheme avoids disk contention
between image generation writes and subsequent
packet file writes on the same physical disk. The
packet data path is shown in Figure 2.

BPF accum pkt file

Encrypt
payload

Translate
IP src/dst

Copy to
writer

Make ISO
image

Write
CD-ROM

Figure 2
hhhhhhhhhhhhhhhh
‡ We run the listener with swapping disabled, but ack-
nowledge potential attacks on RAM hardware [3].

4. Cryptographic Organization
The cryptographic organization of the vault follows
from our requirement that vault data be publishable —
in this way we anticipate the possibility of unrestricted
access to a mass storage device filled with vault data.
We also endeavor to provide access to individual
packet contents with fairly fine granularity.

Our basic strategy is to encrypt all packet payloads;
the challenge is to devise a means of associating dif-
ferent keys with different packets at some level of
granularity. The ends of the spectrum are unattractive:
one key per CD-ROM risks a serious breach if lost,
while managing a different key for each packet
becomes unmanageable.

Our unit of granularity for associating packets with
keys is the conversation , defined as a set of packets
with the same pair of source and destination IP
addresses. Including port numbers would offer finer
control, but would also require special treatment for
non-TCP streams and create problems with port-agile
applications.

Each CD-ROM volume holds sufficient information
to reconstruct the packet traffic it stores, thus no ancil-
lary information need be managed. We use a multi-
level encryption scheme. Symmetric key encryption is
used to seal packet payloads and any additional infor-
mation necessary to reconstruct the packets (explained
below). Asymmetric key encryption is used to encrypt
the symmetric keys. A trusted third party such as the
Regents of the University of Michigan holds the private
key. Figure 3 shows the cryptographic organization on
CD-ROM.

Our implementation uses 1024 bit PGP [4] for
asymmetric key and DESX [5] for symmetric key
encryption. Starting with Karn’s DES implementation
[6] we added both pre- and post-whitening steps for
each block:

DESXk.k 1.k 2
(x)=k 2⊕DESk(k 1⊕x)

DES encrypts 64-bit blocks, so this requires
64 + 56 + 64 = 184 bits of key material, and conserva-
tively extends the effective key length of DES in our
environment to at least 95 bits with respect to key
search (in the sense of Kilian and Rogaway [5]), while
adding a trivial amount of computation to each block
encryption.†

hhhhhhhhhhhhhhhh
† If an attacker could obtain all the plaintexts for all encrypt-
ed packets on a volume, and if the average packet length is
100 bytes, this would yield 6 million plaintext/ciphertext
pairs. Rogaway’s effective key length expression becomes
55+64−1−log2(6×106) = 95 bits [7].

Translation table symmetric key

Volume master symmetric key

Translation tables

Trans. header Packet payload

Regent’s public key

Regent’s public key

Translation table key

Payload key
Figure 3

To hinder traffic analysis, we obscure source and
destination addresses by substitution. A translation
table mapping real to substituted addresses is encrypted
with DESX using a translation table key KT unique to
each volume. To speed up searches for specific conver-
sations, a second table holds all pairs of translated
addresses for which at least one conversation exists on
the CD-ROM. The absence of a given pair of addresses
in the second table means the CD-ROM contains no
packets of that conversation, obviating an exhaustive
search to establish this fact. Both translation tables are
written to CD-ROM.

A key is constructed for a given conversation by
combining the concatenated, untranslated source and
destination IP addresses with a 192-bit volume master
key KV using exclusive-or, and then using DESX in
CBC mode to encrypt a 192-bit constant with the com-
bined value:

KCi
=DESXKV⊕(SAi | | DAi)(CONST)

The resulting 192-bit conversation key Kci
is used to

encrypt packet payloads of the conversation:

Ci = DESXKCi
(Pi)

A new volume master key and translation table key are
generated for each volume. Currently, they are com-
puted from previous keys:

KVi +1
= DESXKVi

(KVi
)

KTi +1
= DESXKTi

(KTi
)

where KV0
and KT0

were randomly generated. This
scheme does not exhibit good long-term randomness;
we plan to replace this with a practically strong random
data generator [8].

A new pair of PGP keys are generated per vault
instance. The public key is used to seal the volume
master and translation table keys before they are writ-
ten to CD-ROM.

Finally, we have built a rudimentary decryption
engine that reconstructs all packet traffic stored on a

KB/sec

Day

0

250

500

750

1000

12 Aug 15 18 21

ggg
gg
g
gggggggg
g
gggggggggggggg

g
g
gggg

g
g
gggg

g

g

gggggggggggg
gg
g
gggggggggggggggggggggggggg
gg
g
gggggggggggggggggggggg
ggggggggggggggggggggggggggg
ggggggggggggggggggggggggggggggggg
gg
g
g
ggg
gggggggggggggggggggggggggggggggggggggg
g

ggggggggg
g
g

g

g

g
ggggggggggggggggggg
g
g

g

ggggg

g
g
gggggg

g

g
gg

g

gggggggggggggggg
g

g

gg

g
g

ggggg

g

ggggg
g
g
g
g
g
ggggggggggggggggggggggggggggg
gg

gg
g

ggg

g
g

ggg
g
gggg
g
ggggggggggg

g

gg

g

g

g

gg
ggg
g
gg

g

ggg
g

g

gg

g

ggg

g
g

gg
gg
gg
gg
g

gggggggggggg
g
ggggggg
g
gg
g
gg
g

g
g

gggggggggggggggggggggggggg
g
g
ggggggg

g

ggg

g

g
gg

g

g

g

g

ggggggg
gggggggggggg
g

g
ggg
g
gggggggg
g
gg

g

g

ggg

g

gggggggggggggggggggggggggggggggggggg

gg

ggg

ggg

gggggggggggggggggggggggggggg

g
g

ggg
gg
gg
gggggggggggggggggggggggggggggggggg
ggg
gggg

ggggggggggggggggggggg
ggggggggggggggggggg
ggggggggggggggggggggggggggggggggggggg
gg
gggggggggggggggggggggggggggggggggggg
ggggggggg
g
ggg
gg
ggg
gggggggggggggggggg
g
ggg
gggggggggggggggggggggggggggggg

g
gggggggggggggggggggg

g

g

g
g

g
g

ggggg

g

gggggggggggg
g

g

gggggg

g

ggg

g

ggg

g

gggggggggggggggggggggggggggggggggggggg
ggggggggggg
g
g
gg
g

g

ggggggggg
g
ggg
g
gg
g

g

gggggggggg
ggggggggggggggggggggggggggggggggggg

g

ggggggggggggggg
g
gggggggggggggggggggg
g
ggggggggggggggggggggggggggg
g

g
g

g

g

gg

g

ggggggg
g

g

gggg

g

ggggggggggggggggggggggggggggggg
gg
ggggggggg
gggg

g

gggggggggggggggg

g

g

ggggggggggggg

g
gg
g

g
g
g
gg

g
ggggggggggggggggggggggggggggggggg

g

ggggggg
g
ggg

g
g

ggg
g
ggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggg
g

g

ggg
ggggg
g
ggggggggggggg
g
gggggggggggg
gggggggggggg

g

ggg
g
ggg
g
gg
gg
gggggggggg
ggggggggggggggggggggggggggggg
g
ggg
ggggggggggggggg
gggggggggggggggg
ggggg
ggggg
gg
ggg
ggggggggggggggggg

g

ggg

g
gg
gg
gggggggggggggggggggggggggggggg

g

g

g

ggggggggggggggggg
g

gg
g
gg

g

gg

g

g

g
g

ggg

g

ggg

g

g

ggggggggggggggggggg
g
gggggg
g
gg
g

gggggggggggggg
g

g

g
ggg
gggggggggg
g
ggggg
ggggggggggggg
g
gg
ggg
g
gg

g
g

ggg
g
gg
gg
gg

g

ggg

g

ggg
g
gg

gg

g
gggg
g
ggg
g
gg
ggg
g
gg
gggggg
g
ggg
g
gggggggggggg
g
gggggg
ggggggggggggggggggggggggggggggg
g
ggggggggggggggggggggggg
g
ggg
g
ggggg
g
gggggggg
gggggg

g

ggg
g
gggggg
gggg

ggg
gggg
gggggggggggggggggggggggggggggggggg
g
gggggggggggg
gg
ggg
ggg
gggggggggggggggggg
g
ggg
ggggggggggggggg
ggggggggggggggggggggg
g
gggggggggggggggggggggggggggggggggg
g
gggggggggggggggggg
g
ggg
g
gggggggggggg
gg
g
gggggggggggggggggggggggg
gg

g

gg
g
gg
g

g

g
gg
g
ggg
gg
gg
gg

gg

gggg

ggggg

gggg

ggg

g
gg
g
g
ggg
g
g

g
g

gg

ggg
g
gggg

g
g

gg
gg
gg
gg
g
gg
ggg

g

g

g
gggggg
g
gggg
gggg
ggggggggg
ggggggggggggg
gg

g

gggggggggg

g

gggg
g
ggggg
gggg
gggggg
g
gg
gg

g

gggggggg
gggggggggg
ggg
ggg
g
ggggggg
ggg
ggg
gggggg
gggg
ggggggggggggggg
ggggggggggggggggggggggggg
gggggggggg
g
ggggggggggggg
ggggggg
ggg
gggggggg
g
g
gg

ggg

ggg ggg
ggggggggggggggggg
gg
gggggggg
g
gggg
g
gg
gg
ggggggggg

g

g
g
ggggg
gg
g

g

ggggg
gg
g
ggg
gggggg
ggggggggg
g
gg
g

g

gg

g

ggg

g

g
ggggggg
g
g

gg

g

ggggggggg
g

gg
gg

ggg

g

g
g

g

g
ggggg
g

g
g

ggggggggggg
ggggggggggg

g

gggggggg

gg

ggggggggggg
g

g

g

ggg

g

g

g

g
g
g
ggggg

g

g

gg
g
gg

g

gggggggggggggggggggggg
g
g

g
ggggggggg
g
ggggggggggggggggggggggggggggggg
g
g

gggggggg
g
gg
g
g
g
gggggggggggggggggggggggggggggggggg

g

ggggggggggg

g

ggg
g
g
gggggggggggggggg
g
g
gggg

g

ggggg
gg
gg
ggggggggggggggggggg

g

g

g

ggggggg

g

g

gg
ggggggg
gggggggg
gg

g

g
ggggg
g
gggg

g

gg

gggggg
g

g

g

gg
g
gggggggggggggggggggggg
g

g

g

g
g

g

ggg

g

g
gg
g
gg
gg

g
g

ggg

g
ggg

ggg

g
g

g

g

ggg
ggg

g

g

gggg
g
gggg
gg
gggg
gg
ggg

g

gggggggggggggggggggggg
g
gggg
g
g
gggg
ggggg

g

gg
gg
g

ggggggg
gggggg
g
gg
g
ggg
gg
gg
g
g

g

ggggggggggg
ggggg
gggggggggggggggggggggg
gggggg
g
gggggg

g

g

g

gggggg
gg

g
g
g
g
ggg
g
gggg
gg

ggggggggggg
ggg
ggg
g

g
g

ggggggggg

g
g

g

g

g

g

ggggggggggggggggggggg
gg
gggggggggggggggggggggggggggggggggg

g

g

gg

g

g

gggggggg

g
g

g

g

gg
g

g

g

g

g
g

gggggggggggggggggggggggggggggggggggg
g
gggggggg

g
g

g

gggggggggggggggggggggggggg

g

gggg
g

g

g

g

g

gg
gg

g

gggg

gg

ggggggggggggg

g
g
g
gg
g

g

ggggg
g
gggggggggggggg

g

gggggggggggggggggggg
g
ggg
ggggg

g
g
gggg

g

ggggggggggggggggggggggggggggggggggggg
g
gggggggggggggggggggggggggggggggggggg
gggg
g
ggg
g
g
g
gggggggggggggggggggggggggggggggg

g

g

g
g

g

g

gggggggggg
g
gggg
ggggg
g
g

g
g
ggg
ggggg
gg

g

ggg
g
gg
gg

g

g

g

g

g

g

gggg
g
g

g
gggg
g
g

g

g

g

gg

gg
gg

g

gg
g

ggg

g
g
g
g

gg
gg
ggg
gggg

g

gg
g
gg
gg
g
g

ggg
ggg
g
ggg
g
gg

g
g
gggg

g
gg
gggggggggggggggggggg
gggggg
ggggggg
ggggggggggggggggggg
gg

g

gggggggg

ggg

g
gggggggggg
g
gggggggggggggggggggggggggggggg

g

g

g

gggggggggggggggggggggg

g

ggggggggg
g
ggg

g

gggggggggggggggggggg
gg
gg

g

g
gg
gg

g

g

ggg
g
g

g

ggg
g
ggggg

g

gggggggggggggggggg

g

g

g

g

g
gg
g
g
gggggggggggggggggggg
g

g

g

g

gggggg
g

g

g

g

g
g

ggggggggggggg

g

gg

gggg

g

gggggg

g

g

g

gg

g

gggg

g

g

g

gg

g

ggggggggggggggggggggggggg

g

gggggggggggg

g
g

g
gggggg
g

g

g

g

gg

g

ggggggggggggggggggg
gg

g
g

g
g

g

ggggggggg
ggg

g
gg

g

g

gg

g

gggg

gg

g

ggggggg
g
g

gg
g
g

g
ggggg

g

gggg

g

g

g

gggggggggggggggggggg

g
g
gg

g

gg
g
ggggggggggggggggg
g
g

g

gg

g

g

g

g
g
g
g
g

g

ggggg
g
g

g

g

g

ggggggg
g

gg

g

ggggggggggggggg

g

g

g

g
gggg
g

g

g

g

ggggggggg

g

g

gggg

g

gg
g

g
g
ggg
g
gg
gggggg
g
ggg
gg
ggggggggg
g
g
g

g

gggg
gggggggggggggggggggggggggggg
g
gg
g
gggggggggggggggggg
ggggggggg

g

g

ggggggggggggggg

g

gg

g

gggggggggggggggggggggggggggggggg
g
ggggggggggggggg
g
ggggggggggggggggggggggggg
ggggggggg

g

gggggggggggggg
g
gggggg
g
ggggg
g
ggg
g
ggg
g
gggggggggggggggggggg

g

g
gg
g

ggg
g
ggggggg
gggggggggggggg

g

g

g

gg

g

g
ggg

gggg

g

g
g
gggg

ggggggggggg
g
gggggggggggggggggggggg
ggggggggggg

g

g
ggggggggggggggggggggggggggggggggggggg
g

g
g

ggggggggggggggggggggggggggggg

gg

gg

g
g
g

gggggggg

gg

g

g

g
gg
ggg
g

g

gg
ggggg
ggggg
ggg
ggg
g

ggggggggggggggggggggggggggggggg

g

gggggggggggggggggg

g

ggggggggggggggggggggggggggg
g
gg
g
gggggg
g
ggg
g
g

gg
gg

g

gg
gg
ggggggggggg

g
g

ggggg
g
g
g
ggggggggggggggggg

g

g

ggggggg

g

g
ggg
ggggggggggggg
g
gg
g
g
g
gg

g

g

g

gggggggggg

g

ggggg

g

g

gggggg

g

g

g

gg

ggg

g

g

g
g

ggggg
g

g

ggggggg
g
ggggggggggggg
g
ggg
g
g
g
gg
g
gggg
g
g
g

gg

gg
g
gg
g
gggggggggg
g
g
g
gg
g
gggg
g
ggggggggggg
g
g

g
g

ggggg
gg

gg

g

ggggggggggggggggggggggggggggggggggggggg
ggg
gggggggggggg
ggggggg
gggggggggggggggg
g
ggggggggggggggggggggggggg

g

gggggggggggggggggggg

g

ggggggggggggggggggggggggggggggggggg
g
ggggggggggggggggggggggggggg
g
gggg
g
ggggggggggggg
g
g
ggg
g
gg
g

gg
ggg gg

g
gg
g

ggggg

g

g

g

gggg
g
gggggggg
g
g
g
gggg
g
g
g
ggg
g
gggggggg
ggggggggggggggggggggggg
g
ggg

g

gggggggg

g

ggggggggggg

g

g
g

g

g

gg
gg
g
ggggggggggggggggggg
gg

g

g

g

ggggg

g

g

gg

g

g

g

g

g
g
g
g

g

g
ggggg
g
gggggg
g
gggggggggg

g
g

gggggggggggggggggggggggggggggggggg
g
gggggg
g
gggggggggggg

g

g

g

gggg

g

g

g
g

g

ggg

g

g
gggggggggggggg

gg

gg

g

gggggggggggg
g
gggggggg

g

gg
g
gg

g
g

ggg
gg
gggggg

g

gg

g

gggggggggggggggggggggggggg

g

g

g

g

g

g

gggg
g
gggggg

g

g

g

ggggg

g

g

gg

g
g
g

ggggggggggggggggggg
ggg
gg
gg

g

ggg
g
gggggggggggggggggggggg
g
ggggggg

g

ggg

g

gg
g
gggggg
g
gggggggggggggggggggg
g
g

gg

g

g

gg

g

g

ggggggggggggg
g
g

g

gggggg

gg

gg
ggg
gg
gg

g

g
gg
gg

g

ggg

g

g

ggg
g
gggggggggg
g
ggg
g
ggggggggggggg

g

ggggg
g
ggggggg
ggggggggggggg

g
ggg
g
g

g

g

g
ggggg

gg
g
g
gg

gg
ggggggggggggggg

g

ggggg
gggg

g
g

gg
g
g
g

g

g

ggg
g

ggg

g

ggggggggggggg
g
gggggggggggggggggg

g

ggggggggggggggggggg
g
gggggggggggggg
gggggggggggg
g
gg

g

g

gg

g

g

g

ggggggggggggggggggggggggggggg
gggg
g

g
g
gg

gg
g
ggg
g

gggg

g
g

g
ggg
g

gggg

gg

g
g

g
g

ggg

g
g
g

g

g

Figure 4 This graph shows vault throughput measured in kilobytes per second during the period 12−21
August 1998. Because values are averaged in 30-second intervals there is some peak clipping; the maximum
observed value is 1.2 MB/sec.

CD-ROM given the private PGP key of the vault that
created it. We have used the engine to verify the
implementation of our cryptographic organization.

5. Experiences
The packet vault has been operational for the last year,
irregularly collecting packets from a 10 Mbps Ethernet.
The network is usually lightly loaded but there are
periods when experimental video work causes traffic to
exceed 70%. During the period 12-21 August 1998 we
operated the vault continuously, collecting about 7.7
GB on 15 CDs. There were four interruptions of
significant duration caused by vault failures during this
period. Figure 4 shows a trace of the vault throughput.

The major challenge in the construction and opera-
tion of the vault has been systems engineering and
integration. Bottlenecks discovered along the way were
removed until the vault could handle the incoming net-
work traffic. For example, it was discovered that pass-
ing packets in and out of the kernel from BPF to MFS
was too slow, so we modified the listener’s kernel to
skip the kernel/user space copies.

Disk usage on the writer must be monitored closely
because of the large data volumes. Currently, the vault
does not clean up when interrupted. To achieve reli-
able operation on restarting, six locations spread across
both machines must be checked for abandoned tem-
porary files.

The data path consists of several stages, some of
which process data in parallel, others sequentially.
Payload encryption and network copying are the most
costly operations in this pipeline, yet both of these
operations occur sequentially. Generating the image

and writing the image to a CD are also costly, but as
larger buffers are available for these steps only the
average throughput is of importance.

If the sustained input rate exceeds the throughput of
any stage in the data path, eventually some buffer
becomes exhausted and the vault fails. The first failure
is almost always caused by the MFS filling up, which
crashes the listening process. Experimentally, with a
70% utilization of the source Ethernet, the vault crashes
after about two minutes. Increasing buffer sizes is of
limited practical value; doubling the memory allocated
to MFS extends this time to four minutes.

At 70% network utilization, while the writer is busy
generating a CD image, its disk and processor utiliza-
tions increases dramatically, and the rcp time
increases by a factor of two to three. It takes about 7
minutes to generate an image under these conditions. A
bug validated our assumption that double-buffering was
needed: a failure to toggle the drive on which the
image was being created resulted in packet files for
every other volume being written to the same disk on
which an image was being built; the resulting overload
backed up the data path and crashed the vault.

The other obvious target for performance optimiza-
tion is the encryption code. We use a machine-specific
implementation of the DES code compiled with full
optimization and aggressively cache the DES key
schedules. These changes speed up the encryption task
by over 80%, but opens the door to a denial of service
attack by an adversary who manufactures packets that
defeat the caching.

6. Discussion
The focus of this work is the creation of a cryptographi-
cally secured record of packet activity on a given sub-
net. The usefulness of such a record is in many ways
dictated by the evidentiary requirements of the legal
system. Our ability to construct an accurate record
must also take into account the creativity and per-
sistence of the adversary, which we consider to be
nearly omnipotent. However, we do not address the
threats outlined in Schneier and Kelsey [9], in which
logging takes place on physically insecure systems; we
assume the vault to be under strict physical and admin-
istrative control.

6.1. Legal issues
A study conducted by the Office of Policy Develop-
ment and Education at the University of Michigan
identifies a number of thorny legal issues connected
with operation of the packet vault [10].

University of Michigan Policy forbids the intercep-
tion of electronic mail without consent or a court order.
Even in the absence of this policy, it is conceivable that
a court would find that the vault is intercepting elec-
tronic mail under Title I of the Federal Electronic Com-
munications Privacy Act (ECPA). Interception for
research purposes might not fall under the so-called
"system administrator exemption," which permits inter-
ception in the normal course of business or as necessary
to protect the rights or property of the service provider,
and could therefore be unlawful. In a similar vein, the
Family Educational Rights and Privacy Act (FERPA)
prohibits disclosing student records to anyone who does
not have a specific need to see them.

More generally, the courts have have read the First
Amendment of the United States Constitution to prohi-
bit government action that would tend to discourage
citizens from speaking their minds. This "chilling
effect" applies here, as awareness of the vault’s pres-
ence would tend to limit free speech by those whose
subnets are being monitored.

The vault is a research instrument, so its use is
under the purview of the University’s regulations on
research involving human subjects. While most such
research requires informed consent, and the signing of a
consent form, it is possible to get an exemption from a
University Institutional Review Board. Exemptions can
be granted to projects that involve little risk to subjects
or where informing the subjects of the nature of the
experiment could bias results. Since anyone who sends
email to a user on a monitored subnet would arguably
be a research subject, obtaining consent from all of
them would be problematic.

Other issues potentially raised by use of the vault
include increasing the likelihood of copyright viola-
tions, bypassing an institution’s policies with respect to
creating permanent records subject to Freedom of
Information Act (FOIA) requests, increasing the likeli-
hood of civil discovery "fishing expeditions" against the
material contained in the vault, weakening users’
Fourth Amendment protections against search and
seizure, and increased exposure of the vault’s operators
to civil liability.

The question of whether encrypted text is legally
the same as clear text has no definitive answer. In some
cases, the purported protection offered by encryption is
irrelevant; for example, it is likely that copyright
infringement takes place when a work is copied, not
when it is read.

The study recommends that, at a minimum, all
users be notified of the vault’s existence. This resolves
some of the above legal issues. However, notification
would not cure First Amendment "chilling," nor would
it address the FOIA or FERPA issues. In addition, it is
not clear how to obtain consent from remote correspon-
dents of local users.

A recommended stronger form of consent would
allow users to volunteer to be monitored, but requires
us to separate on different sets of subnets those users
who consent to monitoring and those who do not or to
modify the vault to discard certain packets. Both
approaches are problematic.

Other recommendations include physically securing
all archival materials, maintaining an access audit trail,
capturing fewer types of packets, and using the vault
only for investigation of specific, ongoing security
incidents.

For these reasons, we have chosen not to attach the
vault to any production subnets at Michigan, nor to
gather many packets. The data we do have were col-
lected on a semi-private CITI subnet for a limited
period after all users of the subnet were notified in
advance.

In corporate environments, by contrast, the repeated
refusal by the Congress to pass laws restricting work-
place monitoring suggests that a business is free to
monitor workers’ communications on its computer sys-
tems without consent or knowledge. In fact, in securi-
ties trading environments, Wall Street regulations
require such monitoring. Use of our vault is less contr-
oversial in these environments (at least for now).

6.2. Limits of DES
Recently, the Electronic Frontier Foundation’s DES
cracker and a worldwide network of personal comput-
ers jointly won RSA Data Security’s DES Challenge
III, obtaining the encryption key to a DES-encrypted
message in 22 hours via a brute-force search of the key
space [11]. Two previous challenges were successfully
cracked by similar methods. Since the vault uses DES
at the core of its encryption strategy, these events call
the security of the data stored on vault CD-ROMs into
question, especially in the long term.

First, we believe our use of DESX inhibits the use
of brute-force DES crackers because it is difficult for an
attacker to derive a plaintext/DES-ciphertext pair from
a set of plaintext/DESX-ciphertext pairs obtained by a
chosen-plaintext attack [7]. However, we have not
quantified the effect of DES’s rapidly declining
strength on our cryptographic organization.

Second, we can replace DES with more secure
triple-DES; this increases the key length of all sym-
metric keys as recommended by Blaze et al [12] and is
a straightforward modification. However, triple-DES is
roughly three times as slow as DES; even though pro-
cessors today are more than three times faster than they
were when we started our project, the additional
encryption cost may be prohibitive.

Finally, we can look to other recent proposed
encryption algorithms and the results of the Advanced
Encryption Standard effort to deliver a more secure
encryption algorithm for our vault, although this is
necessarily a long-term prospect.

In any event, recent developments have shown that
ciphers once considered secure are rapidly being bro-
ken as technologies and analysis techniques mature. It
is not reasonable to assume that any cipher will be
strong enough to withstand decades of determined
attacks, which implies that loss of physical control of
the vault media will lead to exposure of the data they
carry.

6.3. Limits of Passive Protocol Analysis
Ptacek and Newsham point out a shortcoming in pas-
sive protocol analysis due to the inability of an intru-
sion detection system to determine accurately what is
happening on networked machines [13]. They identify
three classes of attacks: insertion, in which the detector
is made to see traffic that the victim does not; evasion,
in which the victim sees traffic the detector does not;
and denial of service, in which the detector is fed traffic
designed to cause it to fail.

The packet vault is largely immune from these
attacks — because the vault obtains packets directly

from the link level device driver, it does nothing
beyond reading and storing each packet that arrives on
the interface. Fragment reassembly, management of
TCP connection state, etc . are left to the analysis phase
after the CD-ROMs are written. This causes attacks on
the vault by, say, deliberately overlapping fragments to
fail, as the vault does not reassemble them; further, the
complete evidence is stored for later analysis. There is
some potential for denial-of-service attacks, including
the one mentioned earlier that defeats the caching of
key schedules.

As long as the recording rate exceeds the arrival
rate, then the packet vault defeats evasion and denial of
service attacks. Insertion attacks are possible, but per-
manent storage of all packets permits later replay on
appropriately instrumented test gear.

6.4. Evidence handling
Sommer outlines general principles for the production
of reliable, computer-derived evidence [14]:

g the scene of the crime must be "frozen"

g there must be continuity of evidence

g all procedures used in examination should be audit-
able

The packet vault records onto CD-ROM — an
immutable material that effectively "freezes" the evi-
dence — all data that traverse a snoopable subnet.
While it is possible that some packets traversing the
network during periods of peak load are not seen by the
vault, its architecture precludes the generation of spuri-
ous packets, i.e., the vault does not manufacture evi-
dence. The vault thus provides evidence that can be
used to support other materials, such as audit logs.

Continuity of evidence is indicated by the data han-
dling architecture of the vault. The monotonically
increasing time-stamped sequence of stored packets
lends further support for continuity of evidence.
Including a digital signature with the CD-ROM con-
tents would help prove the authenticity of any CD-
ROM that purports to have been generated by the vault.

The vault source code and, potentially, the contents
of the CD-ROMs are available for public inspection,
which allows the procedures to be audited.

6.5. Future work
The next major step involves focusing on intrusion
detection methods, replaying vault data in a virtual net-
work testbed. Better administrative and fault-handling
scripts are also needed for graceful shutdown and res-
tart of the vault. An occasional inability of the writer to
allocate buffer space for the private Ethernet link

remains to be resolved. The high disk loads caused by
creating an ISO-9660 image en masse could be
ameliorated by constructing the image incrementally.
We plan to replace our hastily constructed key genera-
tor with a practically strong random data accumulator
and generator [8]. We will investigate the issues in
replacing DES by triple-DES or another cipher to pro-
vide a more secure cryptographic organization for our
vault. Determining and recording the number of pack-
ets dropped during the generation of and digitally sign-
ing each CD-ROM would improve the evidence han-
dling capabilities of the vault. Finally, these and other
steps are necessary to convert the vault from a research
instrument to a highly-available packet capture and
storage mechanism.

7. Acknowledgements
We thank Mike Stolarchuk for his contributions to the
architecture of the packet vault. He also wrote the BPF
layer modifications, and provided invaluable systems
engineering assistance. Dan Boneh suggested the
conversation key mechanism. Joe Saul thoroughly
investigated the legal issues in operating the vault. We
thank Dan Geer for his helpful review and commentary.
This work was partially supported by Bellcore.

8. References

1. Steven McCanne and Van Jacobson, ‘‘The BSD
Packet Filter: A New Architecture for User-level
Packet Capture,’’ pp. 259−269 in Proc. of Winter
USENIX Conf., San Diego (January, 1993).

2. Marshall Kirk McKusick, Michael J. Karels, and
Keith Bostic, ‘‘A Pageable Memory Based Filesys-
tem,’’ pp. 137−143 in Proc. Summer USENIX Conf.,
Anaheim (June, 1990).

3. Peter Gutmann, ‘‘Secure Deletion of Data from
Magnetic and Solid-State Memory,’’ pp. 77−89 in
Proc. of Sixth USENIX Security Symp., San Jose
(July, 1996).

4. William Stallings, ‘‘Protect Your Privacy: The
PGP User’s Guide,’’ Prentice-Hall, New Jersey
(1995).

5. Joe Kilian and Phillip Rogaway, ‘‘How to Protect
DES Against Exhaustive Key Search,’’ pp.
252−267 in Advances in Cryptology - Crypto ’96,
Lecture Notes in Computer Science, ed. N. Koblitz,
Springer-Verlag (1996).

6. Phil Karn, karn@unix.ka9q.ampr.org
(December, 1995).

7. Phillip Rogaway, RSA Laboratories’ CryptoBytes
2(2) (Summer, 1996).

8. Peter Gutmann, ‘‘Software Generation of Crypto-
graphically Strong Random Numbers,’’ pp.
243−257 in Proc. of Seventh USENIX Security
Symp., San Antonio (January, 1998).

9. B. Schneier and J. Kelsey, ‘‘Cryptographic Support
for Secure Logs on Untrusted Machines,’’ pp.
53−62 in Proc. of Seventh USENIX Security Symp.,
San Antonio (January, 1998).

10. Joseph M. Saul, Peter Honeyman, and Virginia
Rezmierski, ‘‘Policy Issues Related to Network
Monitoring: The Secure Packet Vault,’’ Unpub-
lished, Ann Arbor (July, 1997).

11. Electronic Frontier Foundation, in
www.eff.org/DesCracker/.

12. Matt Blaze, Whitfield Diffie, Ronald L. Rivest,
Bruce Schneier, Tsutomu Shimomura, Eric Thomp-
son, and Michael Wiener, ‘‘Minimal Key Lengths
for Symmetric Ciphers to Provide Adequate Com-
mercial Security ,’’ in www.counterpane.
com/keylength.html (January, 1996).

13. Thomas H. Ptacek and Timothy N. Newsham,
Insertion, Deletion, and Denial of Service: Eluding
Network Intrusion Detection, Secure Networks, Inc.
(January, 1998).

14. Peter Sommer, ‘‘Computer Forensics: an introduc-
tion,’’ in www.virtualcity.co.uk/
vcaforens.htm (1997).

