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Abstract

We study repeated irreversible investment. We assume that ex ante ownership
rights are incomplete and ex post property allocation is endogenous. In a stage
game, principal can renege on ex ante contract with agents (investors). To
capture that ownership rights depend on prior arrangements, we introduce a
dynamic game, in which player ex ante ownership shares are equal to their ex
post shares in the stage game of the previous period. With the commitment
constrained principal, equilibrium of the dynamic game features cyclical changes
in investment. These cycles indicate that contractual incompleteness alone
causes output fluctuations. Thus, when costly contracts result in constrained
commitment, persistent cycles in output occur, resembling business cycles.
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1 Introduction

When taxes are too high, people go hungry
When the government is too intrusive people lose their spirit
Act for the people’s benefit. Trust them, leave them alone

Lao Tzu, Tao Teh Ching
Book II, Section 57, (appr. 500 BC)

It is costly and sometimes impossible to enforce contracts. In this paper, we
study repeated irreversible investment. In a stage game, player ownership rights are
based on an ex ante contract, which the principal can revise ex post at an exogenous

∗We are grateful to Andrew Coleman, Ilya Segal, Dmitry Stolyarov and Mike Schwarz for their
helpful suggestions. We appreciate Peter Honeyman’s enduring encouragement and efforts to im-
prove the clarity of this manuscript. The usual caveat about remaining errors applies.



cost, continuous and concave in the magnitude of his ownership share adjustment
(increase). In our setting, ex ante ownership rights are incomplete and allocated en-
dogenously. We introduce infinitely repeated dynamic game, in which stage games
in subsequent periods are interdependent. Starting from the second period, player
ex ante ownership shares are equal to their ex post shares in the stage game of
the previous period. When principal is commitment constrained, equilibrium of
the dynamic game features persistently repeated cyclical changes in investment and
ownership allocations, which indicate that contractual incompleteness alone causes
output fluctuations, i.e., business cycles. The cyclical changes in production (invest-
ment) and ownership (surplus sharing) allocations are the most interesting features
of our model.

Mathematically, costly contracts and imperfect property rights are identical.
Imperfect property rights can always be modelled as costly contracting, with non-
contractible cases treated as infinitely costly.1 In such settings, the classical Coasian
efficiency does not hold as the Coase (1960) theorem does not apply to costly con-
tracting. The literature identifies several causes of inefficiencies. The contract theory
literature deals with an important subset of such inefficiencies, known as a hold-up
problem (also called principal-agent problem).2 In this literature, the most frequent
cause of inefficiencies is the difference between player ex ante and ex post incentives
and bargaining strengths. This reflects empirical evidence (see Williamson (1975),
(1985) and North (1990)) of frequent wedge between ex ante and ex post incentives,
because relative ex ante and ex post bargaining strengths of the players differ.

This literature focuses on alleviating the suboptimality of investment alloca-
tion, when regulations, informational constraints or, in general, non-zero transaction
costs, violate Coase (1960) result.3 Exogenous distribution of the contact surplus

1Costly contracts imply imperfect or incomplete property rights for an object of the contract.
When property allocation specified by an ex ante contract can be modified ex post at a cost by the
player(s), property rights are, clearly, incomplete.

2See Holmstrom and Tirole (1989) review, and Tirole (1999) for a summary of achievements and
unresolved questions of this research area.

3The literature bearing on the principal-agent problem is far too extensive for reviewing, or even
listing it here. For recent developments see Review of Economic Studies, (1999), Vol. 66, Issue 1.
Some references to the literature will be found throughout the paper though we make no claim to
completeness.
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is a standard assumption of this literature. Full surplus is allocated to one of the
players, or the players get equal surplus shares (Nash bargaining), or some other ad
hoc restriction is imposed on player surplus shares. The resulting equilibrium and
player payoffs depend on environment. In this sense, ownership allocation is endoge-
nously determined. Nevertheless, the assumption of exogenous surplus distribution
leads to allocations, which differ from the ones that emerge if surplus distribution
can be chosen by the players. Fixing surplus shares exogenously is equivalent to
imposing an exogenous constraint. Such a constraint could preclude the players
from resolving the hold-up thought an endogenous choice of surplus distribution.
Our focus is a typical hold-up caused by the wedge between player ex ante and ex
post incentives. We suggest that it is harder to study the determinants of such a
wedge and its effect on investment incentives, when player surplus sharing rule is
fixed exogenously. Our model is designed to study the determinants of the wedge
between ex ante and ex post incentives, and its effect on investment incentives. We
allow the principal to choose ex ante surplus division, and, reflective of contractual
imperfections, permit him to adjust this surplus division ex post at an exogenous
cost increasing in the size of required adjustment of his share.

The game theory literature, which addresses a division of a unit size asset is
complementary to agency literature. This literature focuses on the factors that affect
player surplus shares.4 We combine these approaches to investigate the division of a
variable size asset, whose size is endogenously determined by the surplus distribution
between the players, who interact repeatedly and choose the surplus sharing rule in
each period.

First, we introduce a stage game, borrowed from Schwartz (2000), in which
the asset is divided only once. We show that the game has a unique equilibrium, in
which the principal incurs positive ex post expenses to increase his ex ante ownership
share of the asset. We interpret these expenses as spending on contract reneging
(which includes bureaucratic and/or legal fees, or even penalties for the breach of the
ex ante contract). We call an equilibrium with a positive spending on reneging the
reneging equilibrium. We compare the stage game to the one in which the players are
committed, i.e., the ex ante contract cannot be modified ex post. Then, ex ante and

4See for example, Rubinstein (1982).
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ex post surplus shares (and, thus, ownership allocations) are identical, and ownership
rights are well defined and secure. We prove the existence and the uniqueness of
equilibrium outcome in this game, and call it the commitment outcome. In the
reneging equilibrium of the stage game, investment and player payoffs are lower
than in the commitment outcome.

Anderlini and Felli (1997) study property rights by using bargaining games.
They consider a hold up problem in the presence of ex ante contract costs and
investigate the conditions under which socially efficient contracts are infeasible. In
their initial setup, the distribution of bargaining power across agents is exogenous,
and the resulting contracts are constrained inefficient. The inefficiency arises for a
certain range of the bargaining powers of the players. Further, Anderlini and Felli
(1997) endogenize the distribution of the surplus across players. For a certain range
of ex ante contract costs, socially desirable contracts are not feasible, irrespective of
the surplus distribution. Anderlini and Felli (1997) suggest that when the potential
surplus depends on its distribution, the hold up problem is less acute.

Our model is analogous to the Anderlini and Felli (1997) setup when the poten-
tial surplus is dependent on its distribution. While in their paper only two-party
games are considered, we consider multi-party contracts, and our model permits
multi-period contacts, which we study below. Their model is applicable to a wider
range of environments, while our focus is the mechanism behind surplus division.
They use different modeling techniques, and focus on normative issues and ex ante
inefficiencies. Our approach is more applied: we focus on inefficiencies stemming
from the divergence player ex ante and ex post incentives.

Next, we consider two infinitely repeated games. The first game is a supergame,
with the long-lived principal and short-lived investors, based on our stage game. The
second game, which we call dynamic, is identical to the first, except the stage games
played in subsequent periods are interrelated. Starting from the second period,
player ex ante ownership shares are equal to their ex post shares in the stage game
of the previous period. The condition captures that ownership rights depend on
prior arrangements.

In some cases, the first game adequately reflects reality, in others, the dynamic
game is more accurate. For example, to model the effects of taxation on investment,
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consider the game between investors and government (as the principal), where gov-
ernment share is a tax rate. The condition imposed in the dynamic game means
that the realized, that is ex post 2002 tax rate is equal to the ex ante 2003 tax rate.
In other words, government cannot set a “special” ex ante tax rate for 2003 tax year.
The second game suggests stronger enforcement institutions (legal, cultural, etc.)
constraining the players. Strong institutions have more mechanisms to mitigate
government commitment conflict than the weak ones, which exacerbate government
credibility problem due to fewer options to alleviate the commitment deficiency.

In each repeated game, we prove the existence of equilibrium, and study its
properties. We call the lowest discount factor at which each player receives at least
his commitment payoff in some equilibrium, the commitment discount factor. We
prove that for discount factors less than commitment discount factor, each game
has a unique equilibrium. Further, we show that this equilibrium is a reneging equi-
librium, with investment and player payoffs lower than in the commitment outcome
but higher than in the equilibrium of the stage game.

In the equilibrium of the second game, the principal’s ownership share is adjusted
upward for a finite number of periods (denoted a T -cycle), then drops to its initial
level, where a new cycle of upward adjustments starts. Thus, when the principal
is commitment constrained, an equilibrium of the dynamic game has an interesting
feature of cyclical changes in investment, resembling business cycles. Such a pattern
of tax or/and tariff behavior is frequent. In our view, this pattern is caused by
government commitment limitations.

Business cycles, that is recurrent cyclical movements of output, are empirically
important in present-day economy. The search for reasons behind business cycles re-
ceives considerable attention in the macroeconomic literature. To generate business
cycles, a number of papers explores the possibility that frictions of financial markets
may amplify and propagate shocks to the economy.5 Kocherlakota (2000) synthe-
sizes the ideas of Kocherlakota (1996), Cooley, Marimon, and Quadrini (2000), and
Kiyotaki (1998). He demonstrates that endogeneity of credit constraints is crucial

5Bernanke et. al. (1998) generalize this literature. They construct a financial accelerator, and
show how endogenous developments in credit markets work to amplify and propagate shocks to
the economy. They conclude that with reasonable parameterizations of the model such endogenous
developments have significant influence on business cycle dynamics.
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for generating empirically plausible amplification of income shocks with realistic
parameters.

In our model, the cycles are driven by imperfect commitment, which leads to
time-inconsistent government policies. Several existing studies, extending Kydland
and Prescott (1977), point out commitment deficiencies as a cause of business cy-
cles. For example, Phelan (2001) develops a model of government reputation, which
combines trigger models (where good equilibria are supported by a threat of getting
into a bad one) and reputation models (where the type of government is imper-
fectly observable, which creates incentives for bad types to pretend being good).
Phelan (2001) assumes that government’s type (good or bad) changes following a
Markovian process. With such opportunistic governments, the equilibrium features
gradual rebuilding (N -periods) of trust to government after expropriation occurs.
His N -periods resemble our T -cycles.

The connection of commitment and business cycles is not a new idea. It has
been considered by the literature that examines the patterns of risk sharing in
infinite-horizon environments with exogenous random incomes and costly commit-
ment.6 Kocherlakota (1996) allows the allocation of time between labor and leisure
to be endogenous. He studies the environment in which the outside enforcement of
risk-sharing is infinitely costly. He demonstrates that when preferences over con-
sumption and leisure are nonhomothetic, and individuals face idiosyncratic shocks
to labor productivity, efficient allocation of risk results in persistent cycles in aggre-
gate output. Another mechanism to generate cycles of aggregate output is through
market imperfections, which were shown to lead to cycles (for example, Kiyotaki
and Moore (1993) consider imperfections in borrowing against the human capital).

Although the equilibrium of the dynamic game features persistent output cycles,
the mechanism behind them differs from the existing literature. In the dynamic
game cycles could be present in the absence of uncertainty. They persist even with
perfectly competitive capital markets.

The aforementioned macroeconomic literature relies on the presence of uncer-
tainty or market imperfections, or both, to generate the output cycles. Neither
assumption is necessary to get cycles in the equilibrium of our model. The key

6See also Scheinkman and Weiss (1986), Thomas and Worrall (1990), and Kocherlakota (1994).
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factors that generate equilibrium cycles in the dynamic game are investment irre-
versibility, and imperfect (i.e. costly) property rights, dependent on prior ownership
arrangements. This dependence is crucial for generating output cycles. In case of
our supergame with investment irreversibility and commitment imperfections, but
surplus division independent of previous periods, equilibrium cycles of output do
not occur. Perhaps, our model compliments traditional explanations of business
cycles. A combination of our game with the business cycles literature would make it
possible to measure the relative importance of the government commitment problem
and other causes of output volatility.

To summarize, we propose an infinitely repeated game with a new twist: player
actions in subsequent periods are interdependent. This game permits to analyze
dynamic environments with ownership allocation dependant on prior arrangements.
Equilibrium cycles indicate that government credibility problem alone causes out-
put fluctuations, i.e., business cycles. Also, we contribute to the literature on re-
peated costly contracting. We emphasize that costly contracts make production and
property allocations interdependent. We propose a model with jointly determined
ownership and production allocations.

The paper is organized as follows. In Section 2, the stage game is presented
and its equilibrium properties outlined. In Sections 3, 4 and 5 repeated games are
introduced, and their equilibria analyzed, with comparative equilibrium analysis
provided in Section 6. The discussion and conclusion are presented in Section 7.
Proofs and technical details are relegated to Appendices.

2 Stage Game

Let Γ denote a complete information game of N +1 players, a principal and N agents
(investors), and the following order of moves. First, the principal chooses his ex ante
asset share x ∈ [0, 1]. Then, the investors simultaneously and independently choose
their irreversible investments into the asset qn ∈ [0,∞). The aggregate investment

Q =
N∑

n=1

qn
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determines the asset value P (Q). Third, the principal can adjust his ex ante share
to an ex post value y ∈ [0, 1] at an exogenous cost.

The game Γ models endogenous allocation of ownership in environments with
contractual incompleteness. The n-th investor objective is to maximize his profit,
Πn(x, y,q), which is equal to the value of his ex post asset share net of his opportu-
nity cost of funds iqn, with i denoting an outside option return:

Πn(x, y,q) =
qn

Q
(1− y)P (Q)− iqn : n = 1, . . . , N, (1)

where q = (q1, ..., qN ) is the vector of investments. The principal’s objective is
to maximize his net surplus, V (x, y,q), which is equal to the value of his ex post
ownership share net of his adjustment (reneging) cost B(y − x):

V (x, y,q) = yP (Q)−B(y − x) (2)

The asset value is continuous, concave and three times continuously differentiable
for Q ∈ (0,∞) . In the absence of commitment conflict, investment in the asset is
positive7:

P ′(Q) > 0, P ′′(Q) < 0, lim
Q→0

P ′(Q) > i.

The function B is continuous, convex, three times continuously differentiable for
z ∈ (0, 1) and equal to zero for z ≤ 0:

B′(z) > 0, B′′(z) > 0 for ∀z ≥ 0, and B(z) ≡ 0 for ∀z ≤ 0,

which implies that a reduction of the ex post ownership share is free for the principal.
To simplify the exposition, we assume:

P ′′′(Q) ≤ 0, B′′′(Q) ≥ 0 and lim
z→0

B(z) = 0, lim
z→0

B′(z) = 0, (3)

which entails a zero fixed cost. The equilibrium concept used to analyze the game
7Which means that the asset value evaluated at zero exceeds the outside option return.
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Γ is a subgame perfect Nash equilibrium symmetric with respect to the investors.

Definition 1 A reneging equilibrium is an equilibrium in which the principal’s ex
post expenses are positive.

Let Γ̂ denote the game Γ, in which ex ante and ex post contracts are identical.

Theorem 1 There exists a unique equilibrium in each of the games Γ and Γ̂. The
equilibrium of the game Γ is a reneging equilibrium, with investment below, and the
principal’s ownership share above the respective values in the game Γ̂.

Proof. See Appendix.
In the game Γ̂ the principal is committed to an ex ante contract, and from The-

orem 1 the equilibrium of the game Γ̂ is unique, permitting the following definition:

Definition 2 Let Γ̂ denote the game Γ in which x ≡ y. Equilibrium outcome of the
game Γ̂ is called the commitment outcome.

3 The Game G

Let G denote δ-discounted infinitely repeated game, with δ ∈ (0, 1), between the
long-lived principal and short-lived investors, with the game Γ as a stage game. In
the game G the principal maximizes his discounted payoff and each investor – his
per period profit.

The game G models environments, in which players cannot (or have no incen-
tives) to interact (play) with each other throughout the entire game. For exam-
ple, such a game plausibly depicts interactions of government (principal) and the
telecommunications industry (investors). The principal’s inability to commit in the
game Γ makes it likely that the game G would be between the long-lived principal
and the short-lived investors. Moreover, we expect the assumption of short-lived
investors to become even more appropriate in the future, due to a trend of financial
liberalization and globalization of financial markets. To summarize, the game G has
the following elements:

G = G(P,B,N, i, δ),
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which are fixed, unless the reverse is stated explicitly. The equilibrium concept
for the game G is a subgame perfect Nash equilibrium, symmetric with respect to
investors, which cannot be Pareto dominated. Definitions 2 and 1 are applicable for
our infinitely repeated games.

Definition 3 Let δ̂ denote the lowest discount factor at which each player receives
his commitment payoff in some equilibrium. We call δ̂ the commitment discount
factor.

Theorem 2 An equilibrium of the game G exists. For δ ∈ (0, δ̂) [the principal’s
preferred] equilibrium is unique, and is a stationary reneging equilibrium.8

Proof. See Appendix.
Our proof of Theorem 2 has five steps. First, we notice that the equilibrium

existence follows from the continuity and compactness of player action spaces, and
quasi-convexity of their payoffs. Second, we prove the uniqueness of each player
stationary preferred equilibrium, where under “preferred” we mean the one in which
the player’s payoff is his maximum equilibrium payoff. Third, we show that for
δ ∈ (0, δ̂) the principal’s and investor stationary preferred equilibria (PPE and
IPE) coincide, which provides the uniqueness of stationary equilibrium. Fourth,
we prove that for δ ∈ (0, δ̂) the PPE is a reneging equilibrium. Lastly, we assume
the existence of a non-stationary equilibrium and show that in this case, multiple
stationary equilibria would exist, which contradicts the uniqueness of stationary
equilibrium.

The equilibrium uniqueness for δ ∈ (0, δ̂) is driven by the principal’s commit-
ment deficiency. The reneging equilibrium is a balance of two effects: principal’s
higher reneging expenses (thus, surplus loss) and gross payoff increase (thus, po-
tential surplus gain), which accompany the asset value increase. The equilibrium
uniqueness for δ ∈ (0, δ̂) reflects that player objectives are perfectly aligned: each
player payoff increases with δ.

8Theorem 2 has a stronger version, than the proof in Appendix below. We can show that: An
equilibrium of the game G exists. For δ ∈ (0, δ̂) the equilibrium is unique, and is a stationary
reneging equilibrium. When N = ∞ the stronger version of Theorem 2 follows from our proof in
Appendix immediately.
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When δ > δ̂, player interests no longer coincide. When equilibrium surplus ex-
ceeds the commitment outcome surplus, some players experience an absolute payoff
decrease along with a reduction of their surplus share relative to the commitment
outcome values.

Proposition 1 When δ ∈ (0, δ̂), in the equilibrium of the game G, the principal’s
reneging expenses and ex post share decrease with δ and investment increases with
δ .

Proof. See Appendix.
From Theorem 2, when δ ∈ (0, δ̂), the equilibrium of the game G is unique,

which permits us to prove Proposition 1 through explicit derivation of player best
response functions.

From Proposition 1, for δ ∈ (0, δ̂) in the equilibrium of the game G the asset
value and player surplus increase with δ. The principal’s equilibrium payoff in-
creases with δ, despite the fact that his surplus share of the asset decreases with
δ. Our results rationalize the empirical observation of high fluctuations of capital
taxes in countries with low government credibility and weak institutional arrange-
ments9. From Proposition 1, commitment constrained governments renege on their
ex ante tax promises. Thus, the actual (ex post) tax exceeds the promised one.
Such instability of economic policies are characteristic for countries with weak legal
institutions. From Proposition 1, as δ converges to δ̂ equilibrium reneging expenses
converge to zero, and the principal’s share converges to his commitment outcome
share, hence:

Corollary 1 For δ = δ̂ the equilibrium of the game G is unique, and it is the
commitment outcome.

From Proposition 1 and Corollary 1, if δ ∈ (0, δ̂), player equilibrium payoffs are
lower than their commitment outcome payoffs.

9In countries with a strong legal system, low government credibility can be mitigated by legal
mechanisms. Government credibility problems are exacerbated by weak institutions due to fewer
options that such institutions have to alleviate commitment deficiencies.
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4 The Game Gl

So far, we have assumed that the players do not necessarily contract with each other
throughout the entire game. Nevertheless, sometimes players have no choice but to
deal with each other repeatedly. Consider, for example, an economy with no trade or
capital mobility, and model capital taxation as the game G. Then, the government
is the principal, the tax is his share, and GDP – the asset value. Here the players are
committed to play with each other for the entire game: they have no other options.
In this case, the game with all players long-lived is an appropriate model.

Let Gl denote δ-discounted infinitely repeated game, with a stage game Γ and
long-lived players. In the game Gl each player maximizes his discounted payoff. The
equilibrium concept for the game Gl is the same as for G.

Theorem 3 An equilibrium of the game Gl exists. For δ ∈ (0, δ̂Gl) [principal’s
preferred] equilibrium of the game Gl is unique, and is a stationary reneging equi-
librium.

Proof. See Appendix.
In the game Gl investor ability to punish the principal for deviation is stronger

than in the game G. In the game G, Nash reversion is the strictest punishment that
can be imposed on the principal; in the game Gl the investors can employ a zero
investment.

Besides having better means to punish the principal’s deviations, in the game
Gl investors could be strategic: they do not necessarily maximize per period profit
in each period. But from Theorem 3, for δ ∈ (0, δ̂Gl), the investors do maximize
their per period profit in every period, exactly as in the game G. The reneging
equilibrium in the game Gl resembles the one in G:

Proposition 2 The commitment discount factor in the game G is higher than in
Gl. For δ ∈ (0, δ̂Gl) in the equilibrium of the game Gl investment is higher, and the
principal’s reneging expenses and ex post share lower than in G.

Proof. See Appendix.
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Corollary 2 For δ ∈ (0, δ̂Gl) the game Gl Pareto dominates G.

Proof. Follows from Proposition 2
We expect that the players would employ available, and, perhaps, create special

mechanisms to turn the game G into Gl. We suggest that financial market restric-
tions are so persistent because they serve this purpose. Clearly, when investment
market restrictions are relaxed, the game Gl turns into G, which results in inferior
equilibrium allocation, with lower investment and player payoffs. This inference
agrees with the literature that examines effects of financial liberalizations10.

5 The Dynamic Game

Let D denote the game G in which the principal’s ex post action is identical to his
ex ante action in the subsequent period:

xt+1 = yt for ∀t > 1, (4)

where the superscript t refers to the stage game played in period t. For example, in
the game between investors and government, where government share is a tax rate,
equation (4) states that the realized, i.e., the ex post 2002 tax rate is equal to the
ex ante 2003 tax rate, which means that the government cannot set a “special” ex
ante 2003 tax rate.

Equation (4) is an additional constraint on the principal, which we interpret it
as an indication of the existence of stronger mechanisms to constrain the principal
from reneging. This implies that the game D fits for modelling more advanced
institutional environments than the ones for which the game G is appropriate. We

10Demirgüç-Kunt and Detragiache (2001) review the empirical data linking financial development
and economic growth. They investigate whether a relationship between the banking crises and
liberalization is stronger in the countries with weaker institutions. The study provides a variety of
robustness checks, and concludes:

“In the countries where the rule of law is weak, corruption is widespread, the
bureaucracy is inefficient, and contract enforcement mechanisms are ineffective, fi-
nancial liberalization tend to have a particularly large impact on the probability of
the banking crises.”
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attribute constraint (4) to improved contractual institutions compared to the ones
where the game G is applicable. The equilibrium concept for the game D is the
same as for G.

Theorem 4 An equilibrium of the game D exists; for δ ∈ (0, δ̂D) it is unique, and
is a reneging equilibrium.

Proof. See Appendix.
The existence of an equilibrium in the game D follows from the continuity and

compactness of player action spaces, and quasi-convexity of player payoffs. To prove
that for δ ∈ (0, δ̂D) the equilibrium is unique, we introduce the concept of a T -cycle.

Definition 4 We call a T -period sequence starting in period τ a T -cycle, if:

yt < yt+1 for t = τ, . . . , τ + T − 1 and yt−1 > yτ = yτ+T+1.

Along the T -cycle, the principal’s ownership share increases with t and falls in
period τ + T + 1 to his share in period τ . Definition 4 implies that any T-cycle has
a finite length.

Proof of equilibrium uniqueness for δ ∈ (0, δ̂D), is summarized in five steps.
First, we notice that for δ ∈ (0, δ̂G) the principal’s maximum sustainable non-
reneging payoff in the game G is lower than his equilibrium payoff. Second, we
show that the principal’s minmax payoff in the game D is bounded by his minmax
payoffs in the games G and Gl. Third, we prove that there exists δ > 0, at which
the game D has a reneging equilibrium (Main Lemma). As δ approaches zero, the
principal’s maximum achievable non-reneging payoff converges to zero in the games
G and Gl, and in D as well (from Step 2). But his equilibrium payoffs in the games
G and Gl do not converge to each other with δ converging to zero. We show that
there exists a δ > 0, for which the principal’s maximum reneging payoff is higher
in the game D than G, and does not converge to his equilibrium payoff in the
game G as δ converges to zero, from this Main Lemma follows. Fourth, we extend
Main Lemma to δ ∈ (0, δ̂D). Fifth, we notice that the arguments that provide the
equilibrium uniqueness in the games Gl and G are applicable in the game D. Thus,
the equilibrium of the game D is unique for δ ∈ (0, δ̂D).
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From Theorem 4, for δ ∈ (0, δ̂D), the game D has a unique reneging equilibrium;
from this the existence of a unique equilibrium T -cycle follows:

Proposition 3 For δ ∈ (0, δ̂D) equilibrium outcome of the game D consists of the
repetition of a unique T -cycle. The size of the principal’s share adjustment and the
asset value decrease in t for t > 1, where t = 1, ...T .

Proof. See Appendix.
Proposition 3 connects the pattern of taxation with government commitment

capacity. Theorem 4 and Proposition 3 suggest that imperfectly committed govern-
ment exhibits a ‘circular’ pattern of taxation. Tax is adjusted upward for a finite
number of periods, and, thereafter, drops to its initial level. Then, a new cycle of
upward adjustments starts. Clearly, taxes affect investment: circular tax changes
induce counter-cyclical changes in investment. Thus, from Proposition 3 commit-
ment imperfections interplay with business cycles. We suggest that the pattern
of business cycles as affected by legal and enforcement institutions, because these
institutions affect government commitment capacity.

Tax incentives are widely used to remedy recessions as they are proven to help.
Interestingly, the results of Proposition 3 give a new explanation of why a favorable
tax regime helps to curb recession.

Our model can be tested. The results of this section imply that the respon-
siveness (i.e., the duration and volatility of business cycles) to tax incentives, and
the magnitude of appropriate tax adjustments are indicative of government com-
mitment imperfections. Higher magnitude of tax adjustments reflects more severe
government commitment imperfections.

Corollary 3 For δ ∈ (0, δ̂D), equilibrium profit, in the game D, is strictly positive
even when investment market is perfectly competitive.

Proof. See Appendix.
Interestingly, from Corollary 3 when δ ∈ (0, δ̂D) and investment market compe-

tition is high, equilibrium profits in the game D are higher than investor profits,
that follow from technology and market competition characteristics in the absence
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of the T-cycle equilibrium. We suggest that Corollary 3 provides an explanation of
high corporate profits on investment in developing economies (after controlling for
risk). Our result rationalizes “popular wisdom”, which regards investments in the
countries with relatively weak institutions as a lucrative opportunity.

6 Comparative Analysis

The game D with long-lived investors is unrealistic: it is difficult to devise a mech-
anism, which would make the player (investor) stay in such a game credible, espe-
cially given the current trend of globalization. Thus, we compare the equilibria of
the games G, Gl and D only.

Theorem 5 The commitment discount factor in the game D is bounded by the ones
in Gl and G. For δ ∈ (0, δ̂D) player equilibrium payoffs are higher in the game D

than G. For δ ∈ (0, δ̂Gl) principal’s equilibrium payoff is higher in the PPE of the
game Gl than D.

Proof. See Appendix.
From Theorem 5, for δ ∈ (0, δ̂) the principal’s equilibrium payoff is higher in the

game Gl than in D. Clearly, the game Gl permits stronger means for punishing the
principal’s deviation than the game D. Interestingly, from Theorem 5 and Corollary
3 when investment market competition is sufficiently high (close to perfectly com-
petitive) investor equilibrium profits are higher in the game D than Gl. Thus, high
investment market competition creates conditions for institutional developments as
such developments benefit investors.

Corollary 4 Equilibrium in each of the games G, Gl and D is unique for its com-
mitment discount factor, with commitment outcome being an equilibrium outcome
in each game at its δ̂.

Proof. Follows from above.
From Corollary 4 and Theorems 3 — 5 in each repeated game, its commitment

discount factor is the lowest discount factor at which commitment outcome sus-
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tainable, the lowest discount factor with non-reneging equilibrium; and the highest
discount factor at which the equilibrium is unique.

7 Discussion and Conclusion

In many environments, ex post contract violation is routine. The wedge between
ex ante and ex post incentives has numerous reasons (technological, informational,
regulatory, etc.), but it leads to a common consequence: impossibility to sustain
Pareto frontier outcomes in equilibrium. We have shown that when due to invest-
ment irreversibility the equilibrium ex post contract diverges from the ex ante one,
Pareto frontier outcomes are not sustainable, and ownership and investment allo-
cations are interdependent. Thus, our contribution to the modelling of repeated
costly contracting is a new approach, in which production and ownership alloca-
tions (investment and ownership shares) are endogenous. The cyclical changes of
output and player surplus distribution appear to be the most interesting features of
our dynamic game, making it attractive as a tool for modelling repeated contractual
interactions under costly contracting.

We leave causes of irreversibility unspecified to permit a wide range of applica-
tions: from sunk cost or relationship-specific investment irreversibility to the ones
generated by the regulator’s commitment conflict. Clearly, our game can be ex-
tended to analyze agency conflict in the environments with symmetric uncertainty,
for example, when investment return is subject to random shocks.

Our games can be used to evaluate and develop legal rules, such as optimization
of the structure of penalties for a breach of contract. Our model can be extended to
the games, with non-zero fixed costs or non-zero principal’s costs of his ownership
share reduction. Schwartz (2002) considers non-repeated reneging game: a general-
ization of our stage game, in which which all players, can affect ex post ownership
allocation, as the principal can do in the game Γ. The reneging game models “the
two sided reneging”. Infinitely repeated games based on the reneging game, can
be used to model incentives for specific investment, in environments with repeated
interactions and costly contracting, see Schwartz (2002).

Our model has testable implications. For example, from Proposition 1 more
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commitment constrained governments should have higher magnitudes of tax adjust-
ment, and therefore, larger output volatility. Cooley, Marimon, and Quadrini (2000)
reach a similar conclusion. They argue that “the lower is degree of contract enforce-
ability, the larger is the macroeconomic instability,” and support their statement
with and theoretical model and empirical evidence.11

We focus on discount factors below the commitment one (at which the commit-
ment problem is resolved). For higher discount factors our results are about surplus
redistribution rather than commitment imperfections. Still, the question is related
to the question of the determinants of ownership allocation. We hope that our model
is useful for further research of these issues.

Galina A. Schwartz

Email Address: galka@citi.umich.edu
URL: http://www.citi.umich.edu/u/galka
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Appendix

Proof of Theorem 1. The proof is borrowed from Schwartz (2000). A sketch of
the proof is presented below.

In symmetric equilibria, investor actions are identical and, since the principal’s
objective depends on aggregate (not on the individual investors) investment, it is
sufficient for the principal to condition his actions on aggregate investment.

To simplify, we say that a function is defined on a closed interval, when the func-
tion is actually well defined only on the respective open interval. At the boundary
points we consider the left or the right limit of the function. Consider the following
system of equations:

P (Q)−B′(y − x) = 0, (5)

(1− y)A(Q)− i = 0, (6)

where Q ∈ [0,∞), x, y ∈ [0, 1],

A(Q) =
1
N

P ′(Q) + (1− 1
N

)
P (Q)

Q
. (7)
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From properties of the function P, the function A is continuous and twice continu-
ously differentiable for Q ∈ [0,∞) (the function A is a weighted average of marginal
and average costs).

From Schwartz (2000) [proof of Theorem 1] and equation (3) the system of
equations (5) - (6) has a unique solution (y(x), Q(x)) for any x ∈ [0, 1], and it is
continuous, twice continuously differentiable, and Q′(x) < 0:

Q′(x) =
i

(1− y)2A′(Q)− iP ′(Q)
B′′(y−x)

< 0, (8)

where

A′(Q) =
1
N

P ′′(Q) + (1− 1
N

)
1
Q

[
P ′(Q)− P (Q)

Q

]
< 0. (9)

Equations 8 and 9 are negative from the properties of the functions P and B. Due
to equation (3) for any x ∈ [0, 1), y(x) > x, because from equation (5) for any Q > 0
y(x) > x, and from equation (6), for any x ∈ [0, 1), Q(x) > 0. Thus, there exists
a unique equilibrium in the subgame of the game Γ which starts at any x ∈ [0, 1],
and unique best responses Q∗(x) and y∗(x) = y(x,Q∗(x)).

[[Notice that the imposition of equation (3) simplifies the equilibrium structure
of the game Γ, and makes the proof easier. Equation (3) permits us to eliminate
the discontinuities in the best response schedules Q∗(x) and y∗(x).]]

The Game with Complete Commitment

Proof. Let Γ̂ denote the game Γ, in which the principal’s ex post action is restricted
to be equal to his ex ante action. From Schwartz (2000), the game Γ̂ has a unique
Pareto-dominant equilibrium, which we call the commitment outcome. For any x ∈
[0, 1], in the game Γ̂ there exists a unique aggregate best response Q̂(x) = N×q̂(x),
where q̂(x) is each investor’s best response. The functions Q̂ and q̂ are continuous,
twice continuously differentiable and decreasing in x:

q̂′(x) < 0, Q̂′(x) < 0 : ∀ x ∈ (0, 1)
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From Schwartz (2000) [Proof of Theorem 1] Q̂(x) is a solution of equation

(1− x)A(Q)− i = 0,

and Q̂′(x) is equal to:

Q̂′(x) =
i

(1− x)2A′(Q̂(x))
< 0, (10)

and x̂ = min
xi∈X̂

xi, where X̂ is a set of maximizers of

V̂ (x,q) = V (x, x,q) = xP (Q̂(x)),

which implies that x̂ has to be a solution of

dV̂ (x, Q̂(x))
dx

= xP ′(Q̂(x))Q′(x) + P = 0. (11)

Lemma 1 The equilibrium of the game Γ̂ is unique if P ′′′ ≤ 0.

Proof. of Lemma 1. There exists a unique equilibrium of the game Γ̂, when
P ′′′ ≤ 0, because in this case the derivative of equation (11) is negative for any x:

xP ′(Q̂(x))
d2Q̂(x)

dx2
+ xP ′′(Q̂(x))

[
dQ̂(x)

dx

]2

+ 2P ′(Q̂(x))
dQ̂(x)

dx
< 0,

where d2Q̂(x)
dx2 < 0:

d2Q̂(x)
dx2

=
2i

(1− x)3A′(Q̂(x))
+

iA′′′(Q̂(x))

(1− x)2
[
A′(Q̂(x))

]2 < 0, (12)

A′′(Q) =
1
N

P ′′′(Q) +
[
1− 1

N

]
1
Q

(
P ′′(Q)− 2

Q

[
P ′(Q)− P (Q)

Q

])
≤ 0, (13)
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because

P ′′(Q)− 2
Q

[P ′(Q)− P (Q)
Q

] ≤ 0 if P ′′′(Q) ≤ 0.

Equilibrium Dependence on the Number of Investors

Schwartz (2000) established that in both games, Γ and Γ̂, the equilibrium asset size
increases in N :

dQ∗

dN
> 0 and

dQ̂

dN
> 0. (14)

Lemma 2 Let P ′′′(Q) ≤ 0, then dx̂
dN > 0.

[Lemma 2. ][how equilibrium shares vary with the number of investors]. First,
we prove our Lemma for the game Γ̂. From Lemma 1, its equilibrium is unique, from
equations (10) and (11) we have in equilibrium:

x

i(1− x)2
= − P

P ′ ×A′. (15)

Differentiate equation (15) with respect to N and use equation (14) provides:

(1 + x)
i(1− x)3

× dx

dN
= −

[
P ′

P ′ −
PP ′′

[P ′]2

]
[+]

dQ̂

dN
[+]

× A′
[−]
− P

P ′A
′′

[−]

dQ̂

dN
,

where the right hand side is positive from equations (9) and (13). Thus, the left
hand side is positive too, which gives us:

dx̂

dN
> 0,

and Lemma 2.

Lemma 3 Let P ′′′(Q) ≤ 0, and B′′′ ≥ 0 then dy∗

dN > 0.
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Proof. We notice that the system of equations (5) - (6) has a unique solution
(x(y), Q(y)) for any y ∈ [0, 1], and it is continuous, twice continuously differentiable,
and Q′(y) < 0:

Q′(y) =
i

(1− y)2A′(Q)
< 0,

[[We are using y as a state variable here and below.]] Notice, that the function
x(y) is just an inverse of the function y(x), which used in Schwartz (2000) proofs.
Let Vy be defined as

Vy = V (x(y), y,Q(y)),

where (x(y), Q(y)) is a solution of the system of equations (5) - (6). It is easy to
see that the principal’s problem is equivalent to the maximization of the function
Vy

Vy = max
y∈[0,1]

yP (Q(y))−B(y − x(y)). (16)

Differentiation of equations (5) - (6) and the use of the implicit function theorem
provides that Q′(y) and Q′′(y) are negative (similar to the game Γ̂), and x′(y) ≥ 1
and x′(y) ≥ 0

Q′(y) =
i

(1− y)2A′(Q(y))
< 0, (17)

Q′′(y) =
2i

(1− y)3A′(Q(y))
+

iA′′′(Q(y))
(1− y)2 [A′(Q(y))]2

< 0 (18)

P ′

B′′Q
′(y) = 1− x′(y) or x′(y) = 1− P ′

B′′Q
′(y) > 1, (19)

x′′(y) = −P ′′

B′′
[
Q′(y)

]2 − P ′

B′′Q
′′(y) +

P ′B′′′[1− x′(y)]
[B′′]2

Q′(y) > 0. (20)
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Differentiate equation (16) and use equations (17) and (19) to show that in equi-
librium of the game Γ:

yP ′Q′(y) + Px′(y) = 0,

which differentiation with respect to N provides:

d

dN

[
y

i(1− y)2

]
= −x′(y)

d

dN

[
P

P ′A
′
]

[−]

− P

P ′A
′x′′(y)

dy

dN

dy∗

dN

 (1 + y)
i(1− y)3

[+]

+
P

P ′x
′′(y)
[+]

 = −x′(y)
[+]

×


[
P ′

P ′ −
PP ′′

[P ′]2

]
[+]

dQ∗

dN
[+]

× A′
[−]
− P

P ′A
′′

[−]

dQ∗

dN

 ,

which proves that dy∗

dN > 0, and Lemma is proven.

Lemma 4 If in the game Γ dy∗

dN < 0, then dx∗

dN ≤ 0.

Proof. (Lemma 4). From equation (5) and (14)

dy∗

dN
>

dx∗

dN
,

thus, dx∗

dN < 0 if dy∗

dN < 0.

Differentiate equation (5) with respect to x and use equation (8) to show

P ′Q′(x) = B′′ × (y′(x)− 1) < 0,

y′(x) = 1 +
P ′

B′′Q
′(x),

0 < y′(x) < 1. (21)

[[For ∀x ∈ [0, 1], there exists a unique equilibrium the subgame of the game Γ that
starts at x, and equilibrium schedules Q(x, y) = Q∗(x) and y(Q, x) = y∗(x) are
continuous and convex in x (need to recheck the sign of second derivative of y∗(x)):
dQ∗(x)

dx < 0, d2Q∗(x)
dx2 < 0, dy∗(x)

dx > 0, d2y∗(x)
dx2 > 0.]]
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Proof of Theorem 2

We call an equilibrium in which player payoff is his maximum equilibrium payoff
this player’s preferred equilibrium, and denote EP ⊂ E and EI ⊂ E the sets of
principal’s and investors’ preferred equilibria (PPE and IPE), where E is the set of
game G equilibria. Clearly, in any equilibrium, player payoffs (V e,Πe) belong to the
intervals bounded by their preferred equilibria payoffs:

V e ∈ [V I , V R] and Πe ∈ [ΠR,ΠI ].

Let an equilibrium in which the principal’s surplus share equals s be called an s-
surplus split equilibrium:

s =
V e

Se

where Se = V e + Πe is player surplus in the outcome oe, and e ∈ E. In PPE and
IPE, the s-surplus split is respectively the highest and the lowest. Let

S(x,Q, y) = V (x,Q, y) + Π(x,Q, y)

denote player surplus in the outcome o with actions (x,Q, y). Let U(x, Q) be max-
imum principal’s payoff (which is his payoff from deviation) for the ex ante action
x and investment Q:

U(x,Q) = u(x,Q)P (Q)−B(u(x, Q)− x),

where u(x,Q) is equal to

u(x,Q) = arg max
z

[zP (Q)−B(z − x)],

thus,

U(x,Q) = V (x,Q, u(x,Q)).
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Let ∆u(x,Q) and H(x,Q) denote

∆u(x,Q) = u(x,Q)− x and H(x,Q) = ∆u(Q)P (Q)−B(∆u(Q)).

Let T (Q) denote the total gain from investment Q:

T (Q) = P (Q)− iQ = V (x,Q, y) + Π(x, Q, y) + B(y − x).

Then, T and S are related:

S(x,Q, y) = T (Q)−B(y − x).

Principal’s incentive constraint (PIC) holds strictly for efficiency when player equi-
librium surplus is below Pareto frontier.

Summary of Theorem 2 Proof

From continuity and compactness of the action space and quasi-convexity of
player payoffs, there always exists an equilibrium of the game G(δ), see, for example,
Fudenberg and Tirole, (1991).

Let δ̂P define a discount factor at which PIC for the outcome with actions
(ŷ, Q̂, ŷ) holds strictly.

Next, we prove the second part of Theorem 2: equilibrium uniqueness for δ ∈
[0, δ̂), and stationary negotiation equilibrium.

We prove that if V � < V̂ , in IPE and PPE Q� = Q̂(y�), and show that these
PPE and IPE are unique and coincide. We also notice that when PPE and IPE are
unique and coincide, the equilibrium of the game is unique. Then, we show that the
assumptions of V � < V̂ is equivalent to δ ∈ [0, δ̂). Lastly, we demonstrate that in
the game G, for δ ∈ [0, δ̂) PPE is a reneging equilibrium, and prove its stationarity.

Step 1: There exists a unique u(x,Q) for any fixed x ∈ [0, 1] and Q ∈
(0, Q̂∞(0)), and when u is interior (ie. u ∈ (0, 1)) the functions U and u are in-
creasing in Q for any fixed x, and increasing in x from any fixed Q:

∂u(x,Q)
∂Q

∣∣∣∣
x=const

> 0 and
∂U(x,Q)

∂Q

∣∣∣∣
x=const

> 0,
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∂u(x,Q)
∂x

∣∣∣∣
Q=const

> 0 and
∂U(x,Q)

∂x

∣∣∣∣
Q=const

> 0,

and when u(x,Q) is interior (u(x,Q) ∈ (0, 1)) and the functions ∆u and H depend
only on Q (not on x).

Proof. From Theorem 1 there exists a unique u(x,Q), which can be found as
the solution of equation

P (Q)−B′(u− x) = 0. (22)

Keep Q and x fixed, and differentiate equation (22) with respect to u. Since the
derivative is negative, there exists a unique u(x,Q) for any fixed Q and x. For any
interior u(x, Q) (i.e. u(x,Q) ∈ (0, 1)), the expression ∆u(x, Q) = u(x,Q) − x does
not depend on x – it is fully determined by Q, and from equation (22) the function
∆u(Q) increases in Q

d∆u(Q)
dQ

> 0.

Thus, for any fixed x,

∂u(x,Q)
∂Q

∣∣∣∣
x=const

> 0 and
∂U(x,Q)

∂Q

∣∣∣∣
x=const

= uP ′ > 0,

and for any fixed Q:

du(x,Q)
dx

=
d[x + ∆u]

dx
= 1 > 0,

and

∂U(x,Q)
∂x

∣∣∣∣
Q=const

=
∂u

∂x
[P −B′(∆u)] + B′(∆u) = P (Q) > 0,

and we have:

H(x,Q) = U(x,Q)− xP (Q) = (u− x)P (Q)−B(u− x) = ∆uP (Q)−B(∆u),
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Thus, H is the function of Q (but not of x), and Step 1 is proven.
Step 2. Equilibrium investment Q� in the game G in bounded by Qρ, where

Qρ is Pareto optimal investment, [which means that Qρ is a solution of equation:

T ′(Q) = 0 ⇔ P ′(Qρ) = i.]

Proof. Let o� be an equilibrium outcome with actions (x�, Q�, y�), where
Q� > Qρ. Then

dT (Q)
dQ

∣∣∣∣
Q=Q�

< 0,

and there exists ỹ > y� such that

Π(·, Qρ, ỹ) = Π�.

Let x� = y�, then:

T ρ − T� = ỹP (Qρ)− y�P (Q�) > 0,

and, thus, in the outcome õ with actions (ỹ, Qρ, ỹ) we have:

V (ỹ, Qρ, ỹ) > V �,

From Step 1, the outcome õ is sustainable and it is Pareto dominates o�. Thus, in a
non-negotiation equilibrium (x� = y�) we have: Q� ≤ Qρ. Next, let x� < y� and
consider a deviation to the outcome õ with actions (x̃, Qρ, ỹ), where x̃ = ỹ−[y�−x�].
From Step 1, PIC holds in õ, thus, õ is Pareto superior to o�, because

V (x̃, Qρ, ỹ) = T ρ − T� + V � > V �

Π(·, Qρ, ỹ) = Π�

Therefore, in a reneging equilibrium Q� ≤ Qρ, and Step 2 is proven.

30



Step 3. The maximum equilibrium investment is QP� (PPE investment):

max
e

Q�e = QP�.

Proof. Let the outcome o1� with actions (x1�, Q1�, y1�) be PPE and the
outcome o2� with actions (x2�, Q2�, y2�) be an equilibrium of the game G in which
Q1� < Q2�. From V 1� ≥ V 2�

[
∆1�P 1� −B1�]

−
[
∆2�P 2� −B2�]

≥ x2�P 2� − x1�P 1�. (23)

Then, from PIC: U1� − U2� > 0 and U1� − U2� − V 1� − V 2� ≥ 0:

H1� −H2� +
[
x1�P 1� − x2�P 2�]

> 0, (24)

x1�P 1� − x2�P 2� > 0,

and

H1� −H2� −
{[

∆1�P 1� −B1�]
−

[
∆2�P 2� −B2�]}

> 0. (25)

Since Q1� < Q2� we have H1� −H2� < 0, because the function H increases in Q.

Thus, equation (25) holds only if

[
∆1�P 1� −B1�]

−
[
∆2�P 2� −B2�]

< 0.

Combined with equation (23) it provides:

0 >
[
∆1�P 1� −B1�]

−
[
∆2�P 2� −B2�]

≥ x2�P 2� − x1�P 1�,

which contradicts equation (24). Thus, Q1� ≥ Q2�, and Step 3 is proven.
Step 4. Lemma PPE. If V P� < V̂ PPE is a reneging equilibrium, and

QP� = Q̂(yP�), where Q̂(y) is unique (from Theorem 1).
Proof. We consider two cases: reneging PPE and non-reneging PPE.
I. First, let PPE be a reneging equilibrium: an outcome o� with actions (x�, Q�, y�),
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in which Q� 6= Q̂(y�), x� < y�. Let

QP� < Q̂(yP�).

Then, the principal’s PPE payoff can be increased by switching to an outcome õ with
actions (x̃, Q̃, ỹ), such that x̃ = x�+∆x, Q̃ = Q�, ỹ = y�+∆y, and ∆x > 0,∆y > 0,

PIC holds strictly in the outcome õ, and

Q� = Q̂(ỹ),

because from Theorem 1, the function Q̂ is continuous and decreasing in y. Then,
from Step 1:

Ũ − U� = ∆xP� > 0,

and from the properties of the function U, and PICs for the outcomes o� and õ: we
have:

(1− δ)
(
Ũ − U�

)
= Ṽ − V � > 0,

because PIC can be rewritten as

(1− δ)∆xP� = ∆yP� + B′�(∆x−∆y) > 0,

where

B� > B̃(y� + ∆y − x� −∆x) ≈ B� −B′� (∆x−∆y) ,

and ∆x > ∆y. [[where U� = U(x�, Q�), and Ũ = U(x̃ > x�, Q̃ = Q�).]] From
Theorem 1, the function Q̂ decreases with y, thus, there exists ỹ > y�, such that

Q� = Q̂(ỹ),

which provides that the outcome õ is compatible with investor incentives. [[Obvi-

32



ously, ceteris paribus, the principal’s payoff increases with Q, and profit maximiza-
tion of the short-lived investors provides Q = Q̂(y�)]].

Therefore, we have proven that Q� ≥ Q̂(y�). Let

Q� > Q̂(y�), (26)

from which we have:

Π� < Π̂(y�),

where Π� = Π(x�, Q�, y�) = Π(·, Q�, y�) and Π̂(y�) = Π(·, Q̂(y�), y�). Since the
function Π̂ decreases in y, there exists y̆ > yP� such that

Π� = Π̂(y̆) < Π̂(y�),

where Q̂(y̆) < Q̂(y�) < Q� and Π̂(y̆) = Π(·, Q̂(y̆), y̆). Clearly, for any y ∈ (y�, y̆)
there exists Q̃ ∈ (Q̂(y̆), Q�) such that

Π(·, Q̃, ỹ) = Π�, (27)

where

Q� − Q̃ = ∆Q > 0, (28)

ỹ − y� = ∆y > 0, (29)

with ∆Q ∈ (0, Q� − Q̂(y̆)) and ∆y ∈ (0, y̆ − y�). For any Q1, y1 and Q2, y2, with
Q1 < Q2

Π(·, Q1, y1) = Π(·, Q2, y2) = Π�,

we have y1 > y2. From Step 1, there exists x̃ = x� + ∆x, where ∆x > 0 such that

U(x̃, Q̃) = U(x�, Q�), (30)
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and ∆y − ∆x < 0. To prove Main Lemma, we need to show that there exists
Ṽ = V (x̃, Q̃, ỹ) such that

∆V = Ṽ − V � > 0, (31)

where V � = V (x�, Q�, y�). From the above, we have:

∆V = −[P ′� − i]∆Q−B′�[∆y −∆x], (32)

where B′� = B′(y� − x�) and P ′� = P ′(Q�). From equation (27):

T (Q�)− T (Q� −∆Q) = −∆y[P� − P ′�∆Q] + y�P ′�∆Q, (33)

[(1− y�)P ′� − i]∆Q = −∆y[P� − P ′�∆Q],

because Taylor approximation provides:

T (Q�)− T (Q� −∆Q) = [P ′� − i]∆Q.

From PIC and properties of the functions V and U, in PPE we have:

dV (x�, Q�, y�)
dx

∣∣∣∣
x=x�

= 0,

dy

dx
[P� −B′�] + y�P ′�dQ

dx
+ B′�

∣∣∣∣
x=x�

= 0,

and for efficiency, PIC binds strictly, providing:

dU(x�, Q�)
dx

∣∣∣∣
x=x�

= 0 ⇒ u�P ′�dQ

dx
+ P�

∣∣∣∣
x=x�

= 0,

or

P ′�dQ

dx
=

P�

u�

∣∣∣∣
x=x�

.
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From the above presented equations and P� −B′� > 0 we have:

B′�

P� <
y�

u�
, (34)

where u� = u(x�, Q�). From equation (30) we have:

∆Q

∆x
=

P�

u�P ′�

∣∣∣∣
x=x�

. (35)

Next, substitute equation (33) in (32):

∆V = {−∆y + ∆x −∆x}[P� − P ′�∆Q] + (y� + ∆y)P ′�∆Q−B′� [∆y −∆x] ,

∆V = (P −B′�) [∆y −∆x]−∆xP� + (y� + ∆y)P ′�∆Q,

divide the last equation by ∆xP�, and use equation (35) to show:

∆V

∆xP� =
[
1− B′�

P�

] [
1− ∆y

∆x

]
− 1 +

(y� + ∆y)
u�

,

and

∆V

∆xP� =
[
y�

u�
− B′�

P�

]
+

B′�

P�
∆y

∆x
+

∆y

u�
≥ 0

because from equation (34)

y�

u�
− B′�

P� > 0.

Therefore, equation (32) holds, and Lemma PPE is proven if PPE is a reneging
equilibrium. (Investor incentive constraint holds in the outcome õ, because the
same punishment as for the outcome o� deters investor deviation.)

II. Next, we assume a non-reneging PPE – an outcome o� with actions (y�, Q�, y�)
and Q� 6= Q̂(y�), and show that it cannot be an equilibrium.

IIa. Let Q� < Q̂(y�), and consider an outcome õ with actions (ỹ, Q̃ = Q̂(ỹ) =
Q�, ỹ). By construction, ỹ > y, thus, PIC holds in õ and the principal’s payoff is
higher than in the outcome o�. The outcome õ is compatible with investor incen-
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tives, thus, it cannot be the PPE because principal’s payoff is higher in in õ, which
is sustainable.

IIb. Let Q� > Q̂(y�). Then, an increase in Q� is Pareto improving.
Since in this Lemma we assume V P� < V̂ , an outcome (x̃ = ỹ, Q̂, ỹ) is not

sustainable (if x̃ ≥ x̂, Ṽ (x̃ = ỹ, Q̂, ỹ) ≥ V̂ , which conflicts V P� < V̂ and if x̃ < x̂,

Q̂ < Q̂(y�), which conflicts our assumption Q� > Q̂(y�)). Thus, Q� < Q̂.

Then, we have y� > x̂ (because Q� > Q̂(y�), Q� < Q̂ and the function Q̂ is
decreasing.)

To prove IIb, let an outcome o1� with actions (x� ≤ y�, Q1�, y�) be PPE
for V 1� < V̂ . Then, there exists ε > 0, such that for any x in the ε-vicinity of
x� = y�,(i.e., x ∈ Xε, where Xε denotes ε-vicinity of x�, (x� − ε, y�)), there exists
a unique Q�(x) > Q1�, such that

U�(x) = U(x,Q�(x)) = U1�.

And there exists a unique y�(x) < x�, such that for any outcome o�(x) with actions
(x,Q�(x), y�(x)) PIC holds strictly. From our construction:

V 1� = V �(x) = V (x,Q�(x), y�(x)).

Then, for x converging to x� we have:

dS�(x)
dQ

∣∣∣∣
x−→x�

=
dT�(x)

dQ
−B′(∆�(x))

d[∆�(x)]
dQ

∣∣∣∣ ,

where

∆�(x) = y�(x)− x,

and d∆�(x)
dQ

∣∣∣
x−→x�

is, clearly, finite, and B′(∆�(x))|x−→x� = 0, while dT�(x)
dQ

∣∣∣
x−→x�

>

0. Therefore,

dS�(x)
dQ

∣∣∣∣
x−→x�

> 0,

36



from which there exists a reneging outcome o�(x), with x < x�, Pareto superior to
o1� = o�(x�). Thus, o1� cannot be an equilibrium, and II is proven.

Thus, for any V P� < V̂ PPE is a reneging equilibrium, in which case we have
shown in I. that QP� = Q̂(yP�), and Lemma PPE is proven.

Thus, if V P� < V̂ we have QP� = Q̂(yP�) and PPE is a reneging equilibrium.
[[Below, in Proposition 1 we derive the properties of the PPE equilibrium, using our
result of Q� = Q̂(y�), for the properties of the functions Q̂ and V̂ see Theorem .]]

Step 5. Lemma IPE. If V I� < V̂ in any IPE QI� = Q̂(yI�).
Proof of Step 5. The result is obvious for N = 1 and tedious for N > 1.
First, we notice that the lowest discount factor δ̂P at which the principal’s PPE

payoff reaches V̂ increases in N :

dδ̂P

dN
> 0,

because the asset value P̂ increases in N . Thus, we have:

δ̂P
N2 > δ̂P

N1,

if N2 > N1.
Proof of Step 5 From Step 4, at any δ < δ̂P we have V P� = yP (Q(y(x)) −

B(y − x) < V̂

We let δ̂P denote the discount factor at which V P� = V̂ , and we will show that
if V I� < V̂ , in any IPE QI� = Q̂(yI�).

Proof of Lemma IPE, (Theorem 1)

I. We show that if ΠI� < ΠP�, we have QI� < Q̂(yI�).
Proof of I: Assume the reverse. Let QI� > Q̂(yI�), then from Steps 3 and 4:

Q̂(yI�) < QI� ≤ QP� = Q̂(yP�),

and since the function Q̂ decreases in y:

yI� > yP�.
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Then, investor profit is higher in PPE than in IPE:

ΠI� < Π̂I� < Π̂P� = ΠP�,

where

ΠI� = Π(xI�, QI�, yI�), Π̂I� = Π(·, Q̂(yI�), yI�),

ΠP� = Π(xP�, QP�, yP�), Π̂P� = Π(·, Q̂(yP�), yP�),

which contradicts the definition of PPE and IPE. Thus, we have shown that QI� ≤
Q̂(yI�).

II. If at some δ < δ̂P we have: ΠI� < ΠP� (which is equivalent to QI� <

Q̂(yI�)), then at δ < δ̂P we have ΠI� < ΠP� (which is QI� < Q̂(yI�)).
Proof of II: Indeed, assume that at some δ1 < δ̂P the outcomes oI� and oP�

with actions (xI1�, QI1�, yI1�) and (xP1�, QP1�, yP1�) are nonidentical:

QI1� < QP1� and ΠI1� > ΠP1�, V I1� < V P1�,

π1 = ΠI1� −ΠP1� > 0.

Then, clearly, there exists IPE, in which ΠI2� > Π̂ at δ = δ̂P

π̂ = ΠI2� − Π̂ > 0.

To see that let V I2 = V I1�, with V I2 = ŷP I2� < V̂ = ŷP̂ . Since P I2 < P̂ , PIC
holds for the outcome (ŷ, P I2, ŷ) and

ΠI2� ≥ ΠI2 > Π̂.

III. If δ = δ̂P , we have QI� = Q̂(yI�).
Proof of III: From I QI� ≤ Q̂(yI�). Thus, to prove III, we have to show only

that QI� < Q̂(yI�) cannot be IPE. Let N = 1, then, increase in QI� is, clearly,
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Pareto improving. Thus, III holds for N = 1:

QI�
1 = Q̂(yI�),

and combined with results of Steps 3 and 4, it provides that for N = 1 the equilib-
rium of the game G is unique:

QP�
1 = QI�

1 = Q̂(yI�) and SP�
1 = SI�

1 .

Next, let N = 2. Then, from comparing PICs in the games with N = 1 and
N = 2 we have:

From I and II, to prove Lemma IPE it is sufficient to show that QI� = QP� at
δ = δ̂P , which was shown in III, thus, Lemma IPE is proven.

Step 6. When V P� < V̂ the IPE and PPE are unique.
Proof of Step 6: Assume there exist two PPE (or IPE), outcomes o1� and

o2� with actions (x1�, Q1�, y1�) and (x2�, Q2�, y2�). We denote:

U e� = U(xe�, P e�), V e� = V (xe�, P e�, ye�) and Πe� = Π(xe�, P e�, ye�)

∆e� = ye� − xe� and Be� = B(∆e�), where e = 1, 2.

Let Q1� < Q2�, then in both cases, PPE (or IPE) we have from Step 4 (or 5) than
when V P� < V̂ QP� = Q̂(yP�) (or QI� = Q̂(yI�)), in which case

Π1� < Π2�,

which contradicts Π1� = Π2�. Therefore, when V P� < V̂ in all PPE (or IPE) the
asset value is the same:

Q1� = Q2�,

and, thus,

y1� = y2�,
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and from V 1� = V 2�:

y1�P 1� − y2�P 2� = B1� −B2� = 0,

we have:

x1� = x2�.

Thus, the outcomes o1� and o2� are identical, providing that PPE (and IPE) are
unique, and Step 6 is proven.

Step 7. When V P� < V̂ PPE and IPE coincide, the equilibrium of the game
G is unique.

To Prove Step 7, we show that (I) when V P� < V̂ PPE and IPE coincide and
(II) when PPE and IPE coincide in the game G, its equilibrium is unique.

I. From Steps 4 and 5 we have: QP� = Q̂(yP�) and QI� = Q̂(yI�). Then:

yI� ≥ yP� and QP� ≤ QI�, (36)

because from Theorem 1 investor profit and the function Q̂ are decreasing in y.
But equation (36) is agreeable with Step 3 (equilibrium asset value is the highest in
PPE) only when QP� = QI�, in which case:

yI� = yP� and xI� = xP�,

and PPE and IPE coincide. Next, from the definition of PPE and IPE,

V P� = max
e

V e� and ΠI� = max
e

Πe�.

Thus, the equilibrium of the game G is unique when V P� < V̂ .
II: When PPE and IPE coincide, we have:

V P� = V I� = V � and ΠP� = ΠI� = Π�.
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From definition of player preferred equilibria:

V e� ∈ [V I�, V R�] and Πe� ∈ [ΠR�,ΠI�],

and we have:

V e� ≡ V � and Πe� ≡ Π�.

Thus, an equilibrium of the game G is unique, because from Step 6, PPE (and IPE)
are unique when V P� < V̂ , and Step 7 is proven.

Step 8. The assumption of V � < V̂ and δ < δ̂G are equivalent.
From the above presented we have:

V � < V̂ ⇔ Π� < Π̂,

Thus, if V � < V̂ we have S� < Ŝ. Thus, when V � < V̂ we have δ < δ̂, and when
V � = V̂ we have Π� = Π̂. Thus, the commitment outcome is reached when δ = δ̂,
but not at any lower δ.

Step 9. For any δ ∈ [0, δ̂), the equilibrium of the game G is negotiation equi-
librium.

Follows from Lemma PPE (where we prove that PPE is a negotiation equilibrium
for V � < V̂ ), and Step 8 (V � < V̂ is equivalent to δ < δ̂G).

Step 10. From equilibrium uniqueness, stationary of the equilibrium is auto-
matic.

Proof of the stationarity of the equilibrium: Assume the reverse: let player
equilibrium payoffs differ in some periods a and b. Then for efficiency:

Πa ≤ Πb V a ≥ V b.

It is clear from above that when

Πa = Πb V a = V b,
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player actions in periods a and b are identical. So, assume that

Πa < Πb V a > V b, (37)

then from PIC

V a − V b = Ua − U b,

in which case if V a < V b we have Πa < Πb, which contradicts equation 37, and Step
10 is proven, and Theorem 2 is proven as we have shown existence, uniqueness and
stationarity of the equilibrium.

Proof of Proposition 1

Let the outcome oP� with actions (x�, Q�, y�) denote PPE outcome in the game
G(δ).

Lemma 1. There exists ε > 0, such that for any x in the ε-vicinity of x�,(i.e., x ∈
Xε, where Xε denotes ε-vicinity of x�, (x�−ε, x�+ε)), there exists unique y�(x) and
Q�(y) = Q̂(y�(x)), such that for the outcome o�(x), with actions (x,Q�(x), y�(x))
PIC holds strictly.

Proof of Lemma 1. The existence and uniqueness of o�(y) follows from Theorems
1 and 2. Let O�(Xε) denote the set of outcomes o�(x). Then the PPE outcome
oP� = o�(x�) ∈ O�(Xε). From the principal’s maximization in PPE, differentiation
of V �(x) with respect to x at x = x� provides:

dV �(x)
dx

∣∣∣∣
x=x�

= 0,

y�P ′�dQ�(x)
dx

+ P − P +
dy�(x)

dx
P� −B′�

[
dy�(x)

dx
− 1

]∣∣∣∣
x=x�

= 0,

yP ′(Q)
dQ�(x)

dx
+ P +

(
P� −B′�) [

dy�(x)
dx

− 1
]∣∣∣∣

x=x�
= 0,

42



and since PIC holds strictly for efficiency we have at x = x�

dU�(x)
dx

∣∣∣∣
x=x⊗

= 0,

u�(x)P ′�dQ�(x)
dx

+ P

∣∣∣∣
x=x⊗

= 0 ⇔ −P

u
= P ′dQ�(x)

dx
,

thus, we have:

P�
(

1− y�(x)
u�(x)

)
= −

(
P� −B′�) [

dy�(x)
dx

− 1
]∣∣∣∣

x=x�
= 0,

which provides

0 <
dy�(x)

dx
< 1.

Then

dy∗(x)
dx

<
dy�(x)

dx
<

du�(x)
dx

Q∗ < Q� < Q̂,

from which:

x∗ < x� < ŷ < y� < y∗.

By construction, in our equilibrium

dV �

dδ
> 0, (38)
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From Theorem 1, for any y > ŷ the derivative d2V̂
dy2

∣∣∣
y>ŷ

< 0 we have:

dyP⊗(y)
dy

∣∣∣∣
y=y⊗1

>
dyP⊗(y)

dy

∣∣∣∣
y=y⊗2

⇔ y⊗1 < y⊗2,∣∣∣∣∣ dyP⊗(y)
dy

∣∣∣∣
y=y⊗1

∣∣∣∣∣ <

∣∣∣∣∣ dyP⊗(y)
dy

∣∣∣∣
y=y⊗2

∣∣∣∣∣ ⇔ y⊗1 < y⊗2,

and using equation (??)∣∣∣∣∣B′ d∆⊗(y)
dy

∣∣∣∣
y=y⊗1

∣∣∣∣∣ <

∣∣∣∣∣B′ d∆⊗(y)
dy

∣∣∣∣
y=y⊗2

∣∣∣∣∣
From Theorem 2 we know that Q� = Q̂(y�), and Q� < Qρ. Let yρ denote the

principal’s share such that: Q̂(yρ) = Qρ.
When y� > ŷ (and, thus, Q� < Q̂) we have:

dT�

dδ
− dy�P�

dδ
> 0 ⇔ dQ�

dδ
> 0 and

dy�

dδ
< 0. (39)

Lastly, we show that

dB�

dδ
> 0. (40)

To prove this, we notice that from Theorem 2, at δ = δ̂ we have:

Q�(δ̂) = Q̂ and x�(δ̂) = y�(δ̂) = ŷ,

and from equation (39) at any δ ∈ (0, δ̂) we have

Q�(δ) < Q̂ and y�(δ) > ŷ.
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From equations (??), (??) and (??):

dV �(x(δ), δ)
dδ

=
∂V �(x)

∂x

∣∣∣∣
δ=const

× dx

dδ
+

∂V �(x)
∂δ

∣∣∣∣
x=const

> 0,

∂V �(x, δ)
∂δ

∣∣∣∣
x=const

> 0,

dy�

dδ

∣∣∣∣
x=const

× P� + y
dP�

dδ

∣∣∣∣
x=const

−B′� dy�

dδ

∣∣∣∣
x=const

> 0,

Where dQ�(x)
dδ

∣∣∣
x=const

> 0, and, thus: ∂y�(x)
∂δ

∣∣∣
x=const

< 0

1
1− δ

y�
dP�

dδ
+

1
1− δ

B′�
[
dy�

dδ
− dx�

dδ

]

∂

∂δ

[
U�(x)− 1

1− δ
V �(x)

]∣∣∣∣
x=const

+
{

∂U�(x)
∂x

dx

dδ
− 1

1− δ

∂V �(x)
∂x

dx

dδ

}
=

1
[1− δ]2

[
V � − V ∗] > 0,

where the term in curly brackets is equal to zero due to equation (??), which pro-
vides:

du�

dδ
P� + u�

dP�

dδ
− P�

[
du�

dδ
− dx�

dδ

]
− 1

1− δ
P�dy�

dδ
− 1

1− δ
y�

dP�

dδ
+

1
1− δ

B′�
[
dy�

dδ
− dx�

dδ

]
> 0,

(41)

dx�

dδ
P� +

[
u� − 1

1− δ
y�

]
dP�

dδ
− 1

1− δ

[
P� −B′�] dy�

dδ
− 1

1− δ
B′�dx�

dδ
> 0,

where du�

dδ > 0 because .... Equation (41) holds only if the last term is negative,
that is

dx�

dδ
> 0, (42)

because all its other terms on the right hand side are positive, and we have shown
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that the left hand side is negative. From equations (38) and (42) we have:

dB(y� − x�)
dδ

< 0, (43)

To finish the proof notice that from our definition of δ̂

lim
δ→δ̂

x�(δ) = lim
δ→δ̂

y�(δ) = x̂,

and at δ = δ̂ we have:

x�(δ̂) = y�(δ̂) = x̂ = ŷ,

from equation (43) and the continuity of principal’s payoff in B(y−x), thus, Propo-
sition 1 is proven.

Proof of Proposition 2

Let δ < 1, and let parameters and variables have the subscripts Gl and G indicating
the considered game. When possible, we drop this subscript to simplify notation.
From PICs in the games G and Gl:

Û − V̂ =
δ̂G

1− δ̂G

[
V̂ − V ∗

]
and Û − V̂ =

δ̂Gl

1− δ̂Gl

V̂ ,

where V̂ = V (x̂, Q̂) and Û = U(x̂, Q̂), we have:

δ̂G =
Û − V̂

Û − V ∗
< δ̂Gl =

Û − V̂

Û
and ∆δ =

1− V̂
Û

Û
V ∗ − 1

> 0,

which provides ∆δ = δ̂G− δ̂Gl > 0, (and ∆δ decreases in V̂
Û

and Û
V ∗ ). From Theorems

2 and 3 for any δ < δ̂Gl the equilibrium in each game is unique. Thus, to prove
Proposition 2, it is sufficient to show that

x�G < x�Gl < x̂ = ŷ < y�Gl < y�G and Q�
Gl > Q�

G (44)
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holds in some equilibrium. Consider PPE; for any δ < δ̂Gl PICs in the games Gl

and G hold strictly

U�
Gl − V �

Gl =
δ

1− δ
V �

Gl and U�
G − V �

G =
δ

1− δ
V �

G − δ

1− δ
V ∗,

where U� = U(x�, Q�), V � = V (x�, Q�, y�). Thus, we have:

V �
Gl > V �

G ,

because if the principal employs x�Gl as his ex ante action in the game Gl, his payoff
in the game Gl would be higher than V �

G . Since for δ ∈ (0, δ̂Gl) investor profit
increases as principal’s payoffs increases, equilibrium profit is higher in the game Gl

than G. We subtract PICs of the games G and Gl from each other:

U�
Gl − U�

G =
1

1− δ

[
V �

Gl − V �
G

]
+

δ

1− δ
V ∗ > 0 ⇒ U�

Gl > U�
G .

From Proposition 1 we have in the game G:

dU�
G

dx

∣∣∣∣
x=x�G

= 0 and
dV �

G

dx

∣∣∣∣
x=x�G

= 0.

Similarly, in the game Gl:

dU�
Gl

dx

∣∣∣∣
x=x�Gl

= 0 and
dV �

Gl

dx

∣∣∣∣
x=x�Gl

= 0.

[[[See my MFN paper for the complete derivation] Next, evaluate dUGl(x
�
G,Q̃)

dx

∣∣∣
x=x�G

and show that

dUGl(x�G, Q̃)
dx

∣∣∣∣∣
x=x�G

> 0,
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where from PICs we have Q�
G < Q̃ < Q̂ and y < ỹ < y�G. Thus,

x�G < x�Gl

because d2UGl
dx2 < 0. Similarly, we evaluate dVGl

dx at x̃ such that QGl(x̃) = Q�
G and

yGl(x̃) = y�G. In this case x̃ > x�G and

dVGl

dx

∣∣∣∣
x=x̃

<
dV �

G

dx

∣∣∣∣
x=x�G

= 0.

Thus, x�Gl < x̃, which provides:

y�Gl < y�G,

and from the properties of the function Q̂:

Q�
Gl > Q�

G,

because from Theorems 2 and 3 Q�
Gl = Q̂(y�Gl) and Q�

G = Q̂(y�G), and Proposition 2
is proven.]]

Proof of Theorem 4

Let Dl denote the game D, in which investors can use zero investment to punish the
principal’s deviation. The game Dl can be seen as the game D, in which investors are
long-lived, but constrained from strategic actions, i.e., each period they maximize
their per period profit. We use this definition of the game Gl to simplify the proofs12.
Clearly, equilibria of the games D and Dl are similar, as the games are almost
identical.

Step 1. In the game D action spaces of all players are continuous and compact,
and player payoffs are quasi-convex. Thus, equilibrium exists.

Step 2. Let V̄ be the maximum principal’s payoff sustainable in the game G

without negotiations, i.e., the maximum principal’s payoff sustainable in outcome
12It appears that our results hold even if investors can be strategic.
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(x,Q, y) with x = y. Then:

V̄ < V �. (45)

Proof of Step 2: Let V̄ ≥ V �; then, from PICs at (x�, Q�) and (ȳ, Q̄) we have:

U(x�, Q�) ≤ U(ȳ, Q̄). (46)

From the proof of Proposition 1 in PPE we have: dU(x,Q)
dx

∣∣∣
x=x�

= 0, and its second
derivative with respect to x is negative for any x ∈ [0, 1]. Thus, the function U is
decreasing for x > x�:

U(x�, Q�) > U(x,Q),

which contradicts equation (46). Therefore, equation (45) holds, and Step 2 is
proven.

Step 3. The principal’s respective minmax payoffs in the games G and D are
V pun

G (u)
1−δ and V pun

D (u)
1−δ , where u denotes the ownership share to which he deviated.

Then, V pun
D (u) is decreasing in u, and is lower than V ∗:

V pun
D (u) ≤ V pun

G < V ∗ and
dV pun

D (u)
du

≤ 0.

Obviously, for any u ∈ (0, 1] we have V pun
G = V ∗. Next, we notice that principal

can reach V pun
D (u) in the game G by employing his actions from the game D. Thus,

V pun
D (u) < V pun

G = V ∗. The same logic provides that dV pun
D (u)
du ≤ 0, and Step 3 is

proven.
Step 4. When δ is close to zero, equilibrium of the game D is a negotiation

equilibrium.
Proof of Step 4: When δ → 0 the highest asset value sustainable in the games

D, G, Dl and Gl without negotiations converges to zero in all these games

lim
δ→0

P̄D = P̄G = P̄Gl = P̄Dl = P̄ = 0,
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because when δ → 0 PICs in the games D, G, Dl and Gl converge to each other:

H(Q̄D) =
1

1− δ
V̄ ∗

D −
δ

(1− δ)
V pun

D (ū);

H(Q̄G) =
1

1− δ
V̄G −

δ

(1− δ)
V ∗;

H(Q̄Dl) = H(Q̄Gl) =
1

1− δ
V̄Dl =

1
1− δ

V̄Gl,

and P̄ = 0 because in the game G we have limδ→0 P̄G = 0 (when δ → 0 the game
G converges to the game Γ). Thus, principal’s non-negotiation payoff sustainable in
the games D, G, Dl and Gl converges to zero when δ → 0:

lim
δ→0

V̄D = V̄G = V̄Dl = V̄Gl = 0. (47)

Next, we show that there exists a 2-cycle with principal’s per period payoff Ṽ sus-
tainable in the game D, such that

Ṽ (1 + δ) = V (y2, Q1, y1) + δV (y1, Q2, y2);

where y1 = x�G, Q1 = Q∗(y2), y2 = y�G, Q2 = Q�
G = Q�

G(x�G) = Q̂(y�G), and subscript
and superscript �G denote the equilibrium values for the game G.

From equation (47) there exists some δ > 0 such that

Ṽ − V̄G > V̄D − V̄G,

because

lim
δ→0

V �
G − V̄ = V ∗ − 0 > 0.

Thus, limδ→0 Ṽ 6= 0, and principal’s payoff in the game D is strictly higher when his
share is adjusted down infinitely often than his payoff from any monotone increasing
sequence yt, and Step 4 is proven.

Step 5. Let δ be close to zero. Then, player equilibrium payoffs are higher in
the game D than G.
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From Step 4, when δ → 0 in the games D and Dl principal’s ownership share is
adjusted down in equilibrium infinitely often. Thus, equilibria of the games D and
Dl are negotiation equilibria.

Using Proposition 2 and taking the limits of δ → 0, similar to the proof of Step
4, there exists a 2-cycle, (y1?

Dl, Q
2, y?

Dl), (y2?
Dl, Q

1, y1?
Dl) such that y1?

Dl ∈ (x�G, x�2
Gl ) and

y2?
Dl ∈ (y�Gl, y

�
G), and Q2 = Q̂(y2?

Dl) > Q�
Gl, and Q1 is a solution of equation:

U1?
Dl − V 1?

Dl = H(Q1) + ∆2?
DlP

1 =
δ

(1− δ)
V ?

Dl,

where U1?
Dl = U(y2?

Dl, Q
1?
Dl) and V 1?

Dl = V (y2?
Dl, Q

1?
Dl, y

1?
Dl) = y1?

DlP
1?
Dl, and PIC in the

game Dl holds for (y2?
Dl, Q

1?
Dl, y

1?
Dl)

U2?
Dl − V 2?

Dl = H(Q2)−
[
∆2?

DlP
2?
Dl −B2?

Dl

]
=

δ

(1− δ)
V ?

Dl,

where U2?
Dl = U(y1?

Dl, Q
2?
Dl) and V 2?

Dl = V (y1?
Dl, Q

2?
Dl, y

2?
Dl) = y1?

DlP
2?
Dl +

[
∆2?

DlP
2?
Dl −B2?

Dl

]
,

∆2?
Dl = y2?

Dl − x2?
Dl. where

V 2?
Dl + δV 1?

Dl = (1 + δ)V ?
Dl,

and from combining PICs in the game Gl 2-cycle, (y1?
Dl, Q

2, y?
Dl), (y2?

Dl, Q
1, y1?

Dl):

U2?
Dl + δU1?

Dl − (1 + δ)V ?
Dl =

δ(1 + δ)
(1− δ)

V ?
Dl,

and subtracting the PIC in the game G:

U2?
Dl + δU1?

Dl − (1 + δ)U�
G =

(1 + δ)
(1− δ)

{V ?
Dl − V ?

G}+
δ(1 + δ)
(1− δ)

V ∗, (48)

or taking the limit δ → 0 we have

U2?
Dl − U�

G = V ?
Dl − V ?

G,

thus, U2?
Dl −U�

G > 0 does not converge to zero as δ → 0, when V ?
Dl − V �

G > 0, which
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clearly is possible because

V 2?
Dl − V �

G > 0,

and V 2?
Dl −V �

G does not converge to zero as δ → 0, because as δ → 0 we have V 2?
Dl →

V �
Gl, from which

V ?
Dl − V �

G > 0

follows immediately. Notice that

V ?
Dl − V �

Gl < 0,

because V 2?
Dl ≤ V �

Gl, and V 1?
Dl < V �

Gl. [[we use this to prove that V ?
Dl < V �

Gl]]
The same technic provides that in the game D as δ → 0:

V ?
D − V �

G > 0,

the notation in the proof for the game D is more cumbersome because of terms
δ

(1−δ)V
pun
D (ut). When δ → 0 these terms, clearly, do not converge to δ

(1−δ)V
∗, from

which the result V ?
D − V �

G > 0 follows.
Step 6. The game D has a negotiation equilibrium for any δ < δ̂, and V ?

D−V �
G >

0.

Proof of Step 6: We consider PPE, and show that for any δ there exists an
outcome in the game D, Prove that Let the change in δ be have the same effect on
player equilibrium actions in the games D and G:

dy1?neg
D

dδ
=

dx�G
dδ

> 0,
dyt?neg

D

dδ
=

dy�G
dδ

< 0, and
dQt?neg

D

dδ
=

dQ�
G

dδ
> 0.

Then, PICs in the game D hold. Thus, for any δ < δ̂ there exists negotiation
outcome with a T-cycle (y1?neg

D ), and investments (Qt?neg
D ) in which

V ?neg
D − V �

G > 0,
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(and y2?
D < y�G and Q2?

D > Q�
G.) Thus, we have shown that the principal’s PPE

payoffs is higher than his payoff in the game G.

Next, we show that from Step 5 (the game D has negotiation equilibrium for δ

close to zero) the game D has a negotiation equilibrium for any δ < δ̂.
Assume the reverse. Let the game D have a negotiation equilibrium for some

δnon < δ̂, with equilibrium actions (y?non
D , Q?non

D , y?non
D ). Then, there exists some

δ̃ < δnon at which principal’s maximum non-negotiation and negotiation payoffs are
the same:

V ?non
D = V ?

D > V �
G ,

and subtract these outcome’s PICs:

T∑
t=1

δt−1
{
U?non

D − U t?
}

= 0 =
δ

1− δ

[
T∑

t=1

δt−1V pun
D (ut?)− V pun

D (u?non)
T∑

t=1

δt−1

]
> 0,

to get a contradiction. Thus, the equilibrium in the game D is negotiation equilib-
rium for any δ < δ̂, and Step 6 is proven.

Step 7. The proof is of equilibrium uniqueness in the game D is similar to the
proof of uniqueness in the game G. There exists unique negotiation equilibrium, and
unique T -cycle in the game D for δ → 0

Analog of Lemma Main (from the proof of Theorem 2) holds in the game D for
δ → 0 there exists a unique Qt? = Q̂(yt?) for each yt?. In this case, the considerations
can be limited to the two first periods of the T-cycle. Let V ?

D denote the principal’s
PPE payoff.

Step 8. The proof of uniqueness of negotiation equilibrium is the same as in
Theorem 2. From Steps 7 and 8, there exists a unique negotiation PPE and thus, a
unique negotiation equilibrium in the game D for any δ ∈ (0, δ̂D), and we have

V ?
D > V �

G and Π?
D > Π�G.

Proof of Proposition 3

Properties of equilibrium T -cycles

53



Let V ? be average principal’s equilibrium per period payoff in the equilibrium
T-cycle of the game D:

T∑
t=1

δt−1V t? = V ?
T∑

t=1

δt−1.

Then, PIC in period t is:

U t? − V t? =
δ

1− δ
V ? − δ

1− δ
V pun(ut?),

where U t? = U?(y(t−1)?, Qt?), V t? = V (y(t−1)?, Qt?, yt?), and ut? = u(y(t−1)?, Q?t).
1. For any t1 and t2 (1 < t1 < t2) from the T-cycle:

yt1? < yt2? ⇔ Qt1? > Qt2? and ut1? < ut2?,∆t1? < ∆t2? = yt2? − y(t2−1)?

where ∆t? = yt? − y(t−1)?, and Qt1? > Qt2? follows immediately from investor
optimization. Subtract PICs in periods t1 and t2 from each other to get:

[
U t1? − U t2?

]
−

[
V t1? − V t2?

]
=

δ

1− δ

[
V pun(ut2?)− V pun(ut1?)

]
< 0,

and

0 <
[
U t1? − U t2?

]
<

[
V t1? − V t2?

]
⇒ V t1? > V t2? ⇔ U t1? > U t2?.

Thus, principal’s payoff decreases with t for any t > 1, and 1 is proven.
From 1, we the principal’s payoff decreases with t.
2. Then, V t? > V ? for any t > 1. Assume there exists T1 < T, such that

V (T1−1)? > V ? and V T1? < V ?. Then, the principal’s payoff from the T1-cycle is
higher than from the equilibrium T-cycle, which is a contradiction, and 2 is proven.

From 1 and 2 we have:

T∑
t=2

δt−1
[
V t? − V ?

]
= V ? − V 1? > 0,
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and Proposition 3 is proven

Proof of Corollary 3

Proof. Consider PPE, in the game D with N →∞ and δ < δ̂D (which is the same
as V ?

D < V̂ ). Then, from Theorem 4 the game D has negotiation equilibrium. Let
(yt?) denote equilibrium T-cycle, and Qt? – equilibrium investments. Since investors
are short-lived, their profit is at least zero, and for any t > 1 in the PPE we have
for N →∞ we have:

Π(yt?, Qt?) = 0,

T t − yt?P t? = iQt?,

where Qt? = Q̂(yt?) and thus, Qt? decrease with t for t = 1, . . . , T . Since y1? is
the smallest of yt?, investor profit at y1? is zero only if Q1? is the highest among
Qt?, which contradicts Proposition 3, where we have shown that Q1? is the smallest.
Therefore,

Π(y1?, Q1?) > 0,

and since equilibrium T-cycle has a finite length of T, in the game D equilibrium
profits of perfectly competitive investors are strictly positive: Π(y1?, Q1?) δT

1−δT > 0,

and Corollary 3 is proven.

Proof of Theorem 5 (unclean)

PIC in the game G is:

U(x�, Q�)− V � =
δ

1− δ

[
V � − V ∗] . (49)

Next, we construct a 2-cycle that in which principal’s per period payoff equals V �.

We notice that there exists an outcome (x�D, Q�, y�) sustainable in the game D such
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that

U(x�D, Q�)− V (xD�, Q�, y�) =
δ

1− δ

[
V (x�D, Q�, y�)− V pun(u†)

]
, (50)

in which case

U(x�D, Q�)− U(x�, Q�) = (x�D − x�)P (Q�) =
1

1− δ

[
B(∆�

D)−B(∆�)
]
+

δ

1− δ

[
V ∗ − V D(u�D)

]
,

and we have x�D > x� and V D(u) < V ∗ and is decreasing in u. If xD� ≤ x�, the
last equation does not hold: its left hand side is negative, while its right hand side
is positive.

Thus, V (x�D, Q�, y�) > V � and

∆�
D = y� − x�D < ∆� = y� − x�.

Then, we show that there exists an outcome (x†, Q† = Q̂(y†), y†) sustainable in the
game D such that

V † = V (x†, Q†, y†) ≥ V �,

where

∆† = y† − x† ≥ ∆�. (51)

Clearly, there exists Q† > Q� such that V † = V (x†, Q†, y†) = V � sustainable in the
game D:

y†P (Q†)−B(∆†) = y�P (Q�)−B(∆�),

and if equation (51) does not hold

y†P (Q†)− y�P (Q�) = B(∆†)−B(∆�) < 0,
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or

y†P (Q†) < y�P (Q�). (52)

From the proof of Theorem 1 there exists ỹP (Q̃)) = y�P (Q�) (where Q̃ = Q̂(ỹ))
such that:

ỹ < ŷ < y� and P (Q̃) > P (Q�),

and from equation (52) if

y† > ỹ

we have V (x†, Q†, y†) > V �, and V (x̃, Q̃, ỹ) > V �, or ỹ − x̃ < ∆�, in which case

U(ỹ −∆�, Q̃) < U(x̃, Q̃).

Thus, the outcome (ỹ − ∆�, Q̃, ỹ) is sustainable in the game D: PIC in the game
D holds for this outcome, V (ỹ − ∆�, Q̃, ỹ) = V �, and equation (51) holds. To
summarize, we have shown that either the outcome (ỹ − ∆�, Q̃, ỹ) is sustainable
in the game D, or B(∆†) > B(∆�). When B(∆†) > B(∆�), we have y†P (Q†) >

y�P (Q�), and there exists an outcome (ỹ†−∆�, Q̃†, ỹ†) sustainable in the game D,

in which V (ỹ† −∆�, Q̃†, ỹ†) > V �.
From Proposition [] we have V ?

Dl < V �
Gl, and V ?

D < V ?
Dl because the principal’s

payoff V ?
D is achievable in the game Dl if principal employs his actions from the

game D in the game Dl. Thus, we have proven that V ?
D < V ?

Dl, and V �
Gl < V ?

Dl.
Next, let δ be close to zero. Then, if principal employs his actions from the game Dl

in the game D, his payoff is at least V �
G , and principal’s equilibrium payoff in the

game D increases with δ faster?? than his payoff in the game G. Thus, 3 is proven
for any δ < δ̂Dl.

From Proposition 2 and 1 we have:

x∗ < x�G < x�Gl < x̂ = ŷ < y�Gl < y�G < y∗ and Q̂ > Q�
Gl > Q�

G > Q∗.
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From Proposition 2 maximum principal’s payoff sustainable in the game D:

V �
G < VD < V �

Gl,

which follows from comparison of PICs in the games G, D and Gl:

U�
Gl − V �

Gl =
δ

1− δ
V �

Gl < U�
G − V �

G =
δ

1− δ

[
V �

G − V ∗]
< UD − VD =

δ

1− δ

[
V ? − V pun

D (u)
]

<
δ

1− δ
V ? <

δ

1− δ
V �

Gl = U�
Gl − V �

Gl,

where 0 < V pun
D (u) < V ∗. Thus, we have shown that V �

G < V ?
D < V �

Gl.
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